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Abstract

In the pediatric population, B-acute lymphoblastic leukemia (B-ALL) is the most prevalent childhood hematological
malignancy, as well as the leading cause of childhood cancer-related mortality. Advances in cytogenetics utilizing
array-based technologies and next-generation sequencing (NGS) techniques have revealed exciting insights into the
genetic basis of this disease, with the hopes of developing individualized treatment plans for affected children. In
this comprehensive review, we discuss our current understanding of childhood (pediatric) B-ALL and highlight the
most recent genetic advances and their therapeutic implications.
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Introduction

ALL is a malignant clonal proliferation of lymphoid
progenitor cells, most commonly of the B-cell lineage
(B-ALL). In the pediatric population, ALL accounts for
81% of childhood leukemias; leukemia overall accounts
for one third of cancers diagnosed in children between
ages 0—14 years [1]. In the United States, the majority of
ALL cases occur in ages 1-4, with an incidence rate in
this group of 8 per 100,000, and preponderance for
males over females [1]. The long-term rates of event-free
survival (EFS) for childhood B-ALL approach 90%, al-
though infants are associated with poorer prognosis and
lower EFS rates [2-4].

This review discusses our current understanding of
childhood B-ALL and highlights recent genetic advances
and their therapeutic implications. Genetic classification
of B-ALL is paramount for risk stratification and in
treatment evaluation, especially within the context of
clinical trial enrollment. At the forefront of pediatric
oncologic research is the Children’s Oncology Group
(COQG) in North America, as well as the International
Berlin-Frankfurt-Miinster (BFM) Study Group in Europe,
whose work has played a significant role in disease-
specific research and therapeutic developments. Treat-
ment protocols, including clinical trials, are the mainstay
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treatment for children with hematological and solid tumor
malignancies. Cytogenetics advances of B-ALL have led to
the discovery of numerous additional genetic changes, in-
cluding mutations involving key cellular pathways in
lymphoid development, tumor suppression, and cell cycle
regulation. Uncovering the prognostic significance of these
genetic aberrations is fundamental for risk stratification
and ultimately individualized treatment.

Clinical presentation

ALL is a disease of the bone marrow. Clinical suspicion
for ALL arises with signs and symptoms reflective of bone
marrow failure (pancytopenia) and/or extramedullary dis-
ease. The most common symptoms include fatigue, pallor,
bone pain, arthritis, limping, easy bruising/bleeding, and/
or petechiae. Physical examination may show lymphaden-
opathy and hepatosplenomegaly [5]. Extramedullary in-
volvement may be seen in the central nervous system
(CNS) with signs of increased intracranial pressure inclu-
ding headache [6]. In boys, testicular involvement may
present as a testicular mass. Adverse prognostic factors in-
clude high leukocyte count on presentation, age <1 year
or >10 years, and adverse cytogenetics [7,8].

Histology

Bone marrow aspirate studies show a preponderance of
lymphoblasts with high nuclear to cytoplasmic (N:C) ratio,
finely dispersed nuclear chromatin, and prominent nucle-
oli. On occasion, vacuolated cytoplasm and cytoplasmic
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pseudopods can be seen. Bone marrow core biopsies dem-
onstrate diffuse replacement of normal marrow elements
by uniform sheets of round to oval lymphoblasts with in-
dented to convoluted nuclei [9] (Figure 1). No lower limit
of blast percentage is required to establish the diagnosis,
but most treatment protocols define ALL by the presence
of greater than or equal to 25% blasts. By immunopheno-
type, B-lymphoblasts demonstrate universal positivity for
B-cell markers including CD19, cytoplasmic CD79a, and
cytoplasmic CD22; as well as positivity for surface CD22,
CD24, PAX5 and TdT; with variable expression of CD10,
CD20 and CD34 [9]. CD10 is often negative in infant ALL
(age <1 year) with MLL (11q23) gene rearrangements [10].

Recurrent genetic abnormalities

Approximately 75% of childhood ALL cases harbor recur-
rent genetic abnormalities, including aneuploidy or struc-
tural chromosomal arrangements, detected by conventional
karyotyping and fluorescence in situ hybridization (FISH)
[11]. Translocations t(9;22)(q34;q11) [BCR-ABLI], t(12;21)
(p13;q22) [ETV6-RUNXI (TEL-AMLI)], hyperdiploidy, and
translocation t(4;11)(q21;q23) [MLL-AFF1(AF4)] in infants,
are found at the highest frequency in childhood B-ALL
[11]. Other recurrent cytogenetic abnormalities include hy-
podiploidy and translocation t(1;19)(q23;p13) [TCF3-PBX1
(E2A-PBX1I)] [11]. Advances in cytogenetics utilizing array-
based technologies and NGS have uncovered additional
submicroscopic DNA alterations affecting genes involved in
normal hematopoiesis, tumor suppression, apoptosis, and
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cell cycle regulation, including IKZF1, CRLF2, PAXS, and
FLT3 (Table 1). Advanced techniques have revealed new in-
sights into well-known recurrent abnormalities, and have
more importantly elucidated new gene targets involved in
aberrant hematopoiesis and relapse. Overall, the utilization
of these newly identified genetic alterations has clinical util-
ity for diagnosis, risk stratification, and targeted therapy.

Aneuploidy
High hyperdiploidy
High hyperdiploidy (51-65 chromosomes) is one of the
most common cytogenetic abnormalities observed in
childhood B-ALL (Figure 2). It is seen in 25-30% of total
childhood B-ALL cases, with the highest frequency in
the 1 to 4 year age range [12,13]. High hyperdiploidy is
characterized by a nonrandom gain of chromosomes, in-
cluding + X, +4, +6, +10, +14, +17, +18, and +21 [13,14].
The diagnosis confers a good prognosis in childhood B-
ALL, with EFS rates of approximately 80% and overall
survival (OS) rates of 90% (reviewed in [13]). Despite fa-
vorable outcomes, 20% of children relapse and 10%
eventually succumb to the disease [15]. SNP array ana-
lysis of high hyperdiploid B-ALL has shown that almost
80% of cases display further genetic abnormalities in
addition to characteristic chromosomal gains; although
these additional aberrations have no definitive clinical
ramification [14].

Recently, rare alleles of PRDM9 (which encodes a
meiosis-specific histone H3 methyltransferase that controls
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Figure 1 Evaluation of a boy with abdominal pain, night sweats, increased fatigue, petechiae, and a white blood cell count of 113 x
10%/uL. A. Bone marrow core biopsy (100x) showed diffuse replacement of normal marrow elements by uniform sheets of round to oval
lymphoblasts with indented to convoluted nuclei. B. Touch preparation of core biopsy material showed lymphoblasts with high nuclear to
cytoplasmic (N:C) ratio, finely dispersed nuclear chromatin, and prominent nucleoli. C-D. Peripheral blood smear (100x) showed lymphoblasts
with high N:C ratio and cytoplasmic pseudopods.




Table 1 Recurrent genetic abnormalities in B-ALL, associated affected genes, and prognosis

Recurrent genetic abnormality Common genes implicated  Prognosis  Additional comment References

Aneuploidy

High-hyperdiploidy Good FLT3 mutations can be seen in hyperdiploid B-ALL. Almost 80% of cases display [14,93]
further genetic abnormalities of no definitive clinical significance.

Hypodiploidy Poor

Near-hypodiploidy Concomitant alterations in RTK- and Ras-signaling (NF1), as well as IKZF3 (Aiolos) may be [22]
seen.

Low-hypodiploidy Concomitant alterations in TP53, RB1, IKZF2 (Helios) may be seen. [22]

Recurrent translocations

t(12;21)(p13,922) ETV6-RUNXT (TEL-AMLT) Good

t(1;19)(g23;p13) TCF3-PBX1 (E2A-PBX1) Intermediate

1(9;22)(q34,911) BCR-ABLT (Philadelphia Intermediate Associated with older age, higher leukocyte count, [34]

chromosome; Ph+) and more frequent CNS leukemia at time of diagnosis.

MLL (11g23) rearrangements Poor Almost exclusively seen in infant B-ALL. FLT3 mutations are often seen with MLL [93,98]
rearrangements. Epigenetic aberrancies, through microRNAs, are implicated in the
pathogenesis of MLL-rearranged B-ALL.

t(4;11)(921;23) MLL-AFFT1(AF4)

191 (p22923) MLL-MLLT3(AF9)

t(11;19)(q23;p13.3) MLL-ENL

t(10,11)(p13-14,914-21) MLL-MLLTTO(AF10)

Additional genetic alterations

BCR-ABL1-like ALL IKZF1, CRLF2, JAK mutations Poor Defined by a similar GEP to Ph + B-ALL, but in the absence of the BCR-ABLI [60,61,89]
rearrangement [t(9;22)]. Rearrangements in CRLF2 or EBF1-PDGFRB, as well as concurrent
JAK mutations, and/or IKZF1 (lkaros) deletions/mutations may be seen.

JAK mutations, including IKZF1, CRLF2, CDKN2A/B (p16) Poor In the setting of BCR-ABLI-like B-ALL, JAK mutations are associated with [72-78]

JAK2 (9p24) concomitant IKZF1 (lkaros) and CDKN2A/B (p16) alterations. JAK2 mutations are
also associated with CRLF2 rearrangements, and have been described in 60% of
Down syndrome-associated ALL.

iIAMP21 RUNXT1, P2RY8-CRLF2 Poor Occurs in older children with B-ALL. Associated with P2RY8-CRLF2, [56,57]
resulting in the overexpression of CRLF2.

IgH@ (14932) rearrangements IlgH@ with multiple fusion Poor Occurs in older children, adolescents, and young adults. Recurrent [46,51]

partners fusion partners include CRLF2, ID4, CEBP, and EPOR.

FLT3 (13q12) mutations FLT3 Poor Seen in MLL-rearranged and hyperdiploid B-ALL. [93,94]

PAX5 (9p13) rearrangements, PAX5 with multiple fusion Unknown Reported rearrangements with multiple genes, including £TV6 and JAK2. [75,91,92]

deletions partners

Relapsed all CDKN2A/B, ETV6, IKZF1, Poor 20% of total pediatric ALL relapse cases and 60% of [103,104,106-109,111]

CREBBP, NT5C2

high-hyperdiploid relapse cases harbor mutations in CREBBP.

91/1/€/3Ua1u0>/610"3UljUOOYS MMM//:d1Y

91:€ ‘¥ 107 AbojoduQ 9 Abojoipwial [prudwiadxg |p 1@ OO

71 JO € abed



Woo et al. Experimental Hematology & Oncology 2014, 3:16
http://www.ehoonline.org/content/3/1/16

Page 4 of 14

Figure 2 Evaluation of a 3 year-old boy with hyperdiploid B-ALL. A. Abnormal male hyperdiploid karyotype with extra copies of
chromosomes X, 2, 9, 14. B. FISH analysis detected +9q, +14q and +21q in 96% , 93.7% and 96% of the nuclei examined, respectively. In addition,
12p deletion was observed in 89% of the nuclei examined, suggestive of an underlying complex aneuploid (most likely hyperdiploid) karyotype.

¢8

activation of recombination hotspots) have been reported
to be associated with the development of high hyperdiploid
and infant B-ALL [16,17]. Furthermore, it was even postu-
lated that PRDM9 activity during the early stages of
meiosis in the parental germline could lead to genomic in-
stability and development of childhood B-ALL [16].

Hypodiploidy

Hypodiploidy is characterized by fewer than 46 chromo-
somes and is seen in 5-8% of total B-ALL cases [18,19].
The current high risk COG protocol AALL1131 denotes
hypodiploidy as less than 44 chromosomes. The majority
of hypodiploid B-ALL contain 45 chromosomes. The
remainder of hypodiploidly cases are much rarer and
include high-hypodiploid (40-44 chromosomes), low-

hypodiploid (33-39 chromosomes), and near-haploid
(24-29 chromosomes) groups [19,20]. In general, hypo-
diploidy with less than 40 chromosomes confers a poor
prognosis. The 3-year EFS for near-haploid and low-
hypodiploid B-ALL is 30% [19,20]. Hypodiploid cases have
also been shown to undergo reduplication, resulting in a
hyperdiploid karyotype (so called “masked hypodiploid
ALL”), which may preclude the correct genetic classifica-
tion and therefore render an inappropriate treatment regi-
men [20,21].

A recent genomic profiling study of hypodiploid ALL
cases identified multiple recurrent genetic alterations,
distinguishing near haploid from low-hypodiploid ALL
[22]. Near-haploid ALL cases showed alterations targeting
genes in receptor tyrosine kinase (RTK) signaling and Ras
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signaling (NFI) pathways, as well as high frequency alter-
ations in the IKAROS gene family, particularly IKZF3
(Aiolos) which encodes for the zinc finger transcription
factor AIOLOS [22]. Low-hypodiploid cases showed gen-
etic alterations of TP53, RB1, and IKZF2 (Helios) [22]. In
the TP53 mutated cases, non-tumor cells also harbored
TP53 mutations, suggesting an inherited basis of disease
and a possible manifestation of Li-Fraumeni syndrome
(LES) [23]. Both low-hypodiploid and near-haploid ALL
showed activation of Ras-signaling and PI3K (phosphoino-
sitide 3-kinase)-signaling pathways that were sensitive to
PI3K inhibitors such as rapamycin in vitro, suggesting that
PI3K inhibitors could be explored as a therapeutic treat-
ment option [22].
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Recurrent translocations

ETV6-RUNXT1 (TEL-AMLT1)

The most common chromosomal rearrangement in B-ALL is
t(12;21)(p13;q22), encoding for ETV6-RUNX1 (TEL-AMLI)
[11] (Figures 3, 4 and 5). It occurs in 25% of children with
B-ALL and confers an excellent prognosis [24,25]. Both ETV6
and RUNXI1 transcription factors are required for normal
hematopoiesis [26,27]. The ETV6-RUNXI1 fusion protein is
thought to disrupt the normal expression of RUNX1-regulated
genes by converting RUNX1 to a transcriptional repressor [28].

TCF3-PBX1 (E2A-PBX1)
The t(1;19)(q23;p13) rearrangement and its unbalanced
variant der(19)t(1;19)(q23;p13) are commonly seen in B-
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Figure 3 Evaluation of a 2 year-old girl presenting with fevers. A. Bone marrow core biopsy (100x) showing sheets of round to oval
lymphoblasts. B. Bone marrow aspirate (100x) showing lymphoblasts with cytoplasmic vacuoles. C. Representative flow cytometry histogram. The
CD45(dim) gated population contained excess B-lymphoblasts (81% of total), positive for CD10, CD19, CD34, CD38, CD79a, HLA-DR, and TdT. D.
Abnormal female karyotype with unbalanced rearrangements of 1p, a derivative chromosome 1
chromosomes 1p and 12p), and a derivative chromosome 21 (due to an unbalanced translocation between chromosomes 12 and 21), resulting
in ETV6-RUNXT fusion. E-F. Abnormal FISH signal pattern consistent with ETV6-RUNXT (TEL-AMLT) fusion, indicative of t(12;21) translocation.

2 (due to an unbalanced translocation between
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Figure 4 Evaluation of a 3 year-old girl with pancytopenia. A. Bone marrow core biopsy (40x) showing sheets of lymphoblasts. B-C.
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Representative flow cytometry histograms. The CD45(dim) gated population contained excess and abnormal B-lymphoblasts (85% of the total),
positive for CD10, CD13, CD19, CD22, CD34, CD38, HLA-DR, plus intracellular CD79a, intracellular CD22, and TdT. D. Abnormal composite female
karyotype with monosomy 16, trisomy 21, and deletions of 6q and 9q. E. FISH analysis detected the ETV6-RUNXT (TEL-AMLT) fusion, indicative of

t(12;21) translocation. In addition, 4.4% of these abnormal cells showed an extra copy of the RUNXT locus, suggestive of an underlying +21q.

ALL [11] (Figure 6). The resultant TCF3-PBX1 (E2A-
PBX1) fusion protein is comprised of the transactivation
domains of TCF3 and a DNA binding domain of the
homeobox protein PBX1, converting PBX1 into a trans-
activating factor and reducing expression of the TCF3
encoded transcription factors E12 and E47, required for
early lymphoid development [29,30]. The translocation
occurs in 6% of childhood B-ALL and is historically as-
sociated with poorer outcomes [31]. However, advances
in treatment have improved clinical outcomes of chil-
dren with this abnormality and the translocation is now
thought to confer an intermediate prognosis [32].

BCR-ABL1 (Philadelphia chromosome)

B-ALL harboring the t(9;22)(q34;q11) translocation or
‘Philadelphia chromosome’ (Ph + B-ALL), encodes the
fusion gene BCR-ABLI. This translocation is present in
3-5% of childhood B-ALL cases [33] and is associated

with older age, higher leukocyte count, and more fre-
quent CNS involvement at time of diagnosis [34]. The
translocation fuses the 5 sequence of the breakpoint
cluster region (BCR) on chromosome 22 to the 3’ se-
quence of the ABLI gene on chromosome 9. The result-
ant oncoprotein is a constitutively active nonreceptor
tyrosine kinase, responsible for leukemogenesis. The
BCR region contains two breakpoint areas, including a
major BCR (M-bcr) area commonly seen in chronic my-
elogenous leukemia (CML), and a minor BCR (m-bcr)
area seen in pediatric B-ALL. In 90% of childhood B-
ALL cases, fusion genes created by breaks in m-bcr en-
code for a 190 kDa fusion protein (p190) [35].

The use of ABLI1 tyrosine kinase inhibitors (TKIs),
such as imatinib, has been revolutionary in the treatment
of Ph+ B-ALL. Once associated with dismal outcomes,
use of TKIs combined with intensive chemotherapy has
improved 3-year EFS in children and adolescents with
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Figure 5 Evaluation of a 7 year-old boy with B-ALL. A. Abnormal male karyotype with a deletion of 11q and trisomy 21. B. FISH analysis
demonstrated an abnormal signal pattern consistent with ETV6-RUNXT (TEL-AMLT) fusion, indicative of t(12;21) translocation, as well as +21q and
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Ph + B-ALL with no appreciable increase in toxicity [36].
The COG AALLO0622 clinical trial, substituting the second
generation TKI, dasatinib, for imatinib, is under investiga-
tion [37].

MLL gene rearrangements

MLL (mixed-lineage-leukemia) gene rearrangements at
11q23 are present in 80% of all infant B-ALL cases and
10% of all childhood B-ALL [38,39]. The MLL gene
encodes for a protein with histone methyltransferase
activity, which is essential for hematopoietic regulation
of HOXA and MEISI gene expression [40]. The most
common gene rearrangements include t(4;11)(q21;q23)
encoding MLL-AFFI(AF4), t(9;11)(p22;q23) encoding ML
L-MLLT3(AF9), t(11;19)(q23;p13.3) encoding MLL-ENL,
and t(10;11)(p13-14;q14-21) encoding MLL-MLLT10(AFI10)

[41,42]. About 50% of MLL rearrangements show the t
(4;11)(q21;q23) translocation. In general, MLL rearrange-
ments are associated with adverse outcomes, with an EFS
of approximately 35% [43], largely due to cellular drug re-
sistance [44,45].

IGH@ translocations

Rearrangements of the immunoglobulin heavy chain
locus (IGH@) on chromosome 1432 are rare in B-ALL,
occurring in <5% of cases [46]. IGH@ rearrangements
occur more frequently in adolescents and appear to have
poor clinical outcomes. The most common IGH@ part-
ners include CRLF2 (cytokine receptor-like factor 2) at
the pseudoautosomal region 1 (PAR1) of Xp22.3/Yp11.3
(resulting in overexpression of CRLF2) [47], ID4 (inhibi-
tor of DNA binding 4) at 6p22 [48], and members of the
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signal pattern compatible with TCF3 (19p13) rearrangement.

Figure 6 Evaluation of an 18 year-old female with B-ALL. A. Variably cellular marrow (100x) with clusters of B-lymphoblasts and reduced
multilineage hematopoiesis. B. Representative flow cytometry histogram. The CD45(dim) gated population comprised approximately 4% of total
cells and contained no excess blasts. C. Abnormal female karyotype demonstrating t(17;19) translocation. D. FISH analysis detected an abnormal
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CEBP (CCAAT/enhancer binding protein) family [49,50].
Translocations between IGH@ and EPOR (erythropoi-
etin receptor) at 19p13 have also been reported [51-53],
with other remaining translocations appearing sporadic
[46].

Intrachromosomal amplification of chromosome

21 (iAMP21)

iAMP21 is defined as the presence of three or more
copies of the RUNXI gene within a morphologically ab-
normal chromosome 21 [54,55]. Amplified regions on
chromosome 21 are found within a 5.1 Mb region con-
taining RUNX1, miR-802, and genes mapping to the
Down syndrome critical region. iAMP21 occurs in ap-
proximately 2% of older children with B-ALL, and is as-
sociated with poorer outcomes when treated with
standard therapy, and also increased risk for early and
late relapse [56]. The five-year EFS is approximately
29%, with an OS of 71% [57]. Recent studies have shown
that treatment of iAMP21 patients as high-risk provides
a significant improvement in outcome [58]. One recur-
rent abnormality in iAMP21, seen in 35% of children
with iAMP21, includes the P2RY8-CRLF2 fusion (created
by a focal deletion at the PAR1 region at Xp22.3/Yp11.3)
which results in the overexpression of CRLF2 [47]. Gain
of the X chromosome, and abnormalities affecting the
genes [KZF1 (Ikaros), CDKN2A, PAXS, ETV6, and RBI

have also been associated with iAMP21 [56]. Lastly, indi-
viduals born with the constitutional Robertsonian trans-
location rob(15;21)(q10;q10)c have a 2700-fold increased
risk of developing B-ALL with iAMP21 [59].

Submicroscopic genetic alterations

The role of IKZF1 in BCR-ABL1 and BCR-ABL1-like ALL
“BCR-ABLI1-like” B-ALL, seen in 15% of childhood B-
ALL, has recently been defined by gene expression pro-
filing (GEP). BCR-ABL1-like B-ALL shows a similar GEP
to Ph + B-ALL, but in the absence of the BCR-ABLI re-
arrangement [60,61]. These cases are associated with
poor outcomes and increased relapse risk [62-64]. Dele-
tions and sequence mutations in IKZF1 (Ikaros) at 7p13,
which encodes for the lymphoid transcription factor
IKAROS, are associated with approximately 70% and
40% of BCR-ABL-positive and BCR-ABLI-like B-ALL,
respectively [60,63]. Despite improvements in outcomes
for children with Ph+ B-ALL that has resulted from
combination TKI and chemotherapy, recent studies have
demonstrated that Ph + ALL harboring IKZF1 deletions
are associated with unfavorable outcomes; irrespective of
imatinib treatment [65]. In addition to frequent IKZFI
(Ikaros) abnormalities, up to 50% of BCR-ABLI1-like ALL
harbor rearrangements in CRLF2, with concurrent Janus
kinase family (JAK) mutations [66,67]. BCR-ABLI-like
ALL has also shown resistance to L-asparaginase, and to
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a lesser extent, daunorubicin; although intensified ther-
apy could give more suitable treatment options [60].

Additional BCR-ABLI-like ALL studies have shed light
on the heterogenous pathogenesis of ALL. In 2013, a
genome-wide association study (GWAS) of BCR-ABLI-
like ALL identified a susceptibility locus for BCR-ABLI-
like ALL (GATA3, rs3824662) [68]. This locus was
shown to be associated with CRLF2 rearrangements,
JAK mutations, and deletions in IKZFI1 (Ikaros) [68].

Transcriptome and whole-genome sequencing of BCR-
ABLI1-like ALL has also identified other genetic alter-
ations involved in the activation of kinase signaling,
including EBF1-PDGFRB, comprised of the transcription
factor EBFI (early B-cell factor 1) and the receptor tyro-
sine kinase PDGFRB (platelet-derived growth factor re-
ceptor f), resulting from 5q33q33 microdeletion [53,69].
Several reports suggest that the use of TKIs to treat B-
ALL harboring the EBFI-PDGFRB rearrangement may
be of clinical benefit [70,71].

JAK mutations and CRLF2 rearrangements

The role of cytokine receptors and JAK family members
are playing increasingly larger roles in B-ALL studies.
The JAK family encodes four nonreceptor tyrosine ki-
nases (JAK1, JAK2, JAK3, TYK2) involved in cytokine-
mediated signaling (JAK-STAT pathway) [72]. Mutations
occur in about 10% of high-risk childhood B-ALL cases
[73]. In the setting of BCR-ABLI1-like B-ALL, JAK muta-
tions are also associated with concomitant IKZF1 (Ikaros)
and CDKN2A/B alterations, and correlate with worse out-
comes [74,75]. JAK2 mutations are also associated with
CRLF?2 rearrangements (as described above), and are de-
scribed in 60% of Down syndrome (Trisomy 21)-associated
ALL [76,77]. Approximately 40% of CRLF2-rearranged
cases can harbor JAK2 mutations [78].

Abnormalities involving JAK2 (9p24) most often arise
via point mutations involving the pseudokinase domain
R683 [79,80]; however, rare cases of JAK2 rearrange-
ments have also been identified [79,81,82]. In JAK2 rear-
rangements, dimerization or oligomerization of JAK2 is
induced without ligand binding, resulting in constitutive
activation of downstream pathways in leukemic cells. Al-
terations in CRLF2, (Xp22.3/Yp11.3), occur in up to 8%
of unscreened childhood B-ALL cases and up to 15% of
high-risk B-ALL patients [83-86]. CRLF2 rearrangements
result in constitutive activation of the STAT5 pathway,
resulting in leukemogenesis. Additionally, abnormal PI3K/
mTOR pathway signaling has also been implicated [87].

The JAK2 inhibitor, ruxolitinib, has been shown
to reduce tumor burden in xenograft mouse models
harboring BCR-JAK2 [t(9;22)(p24;q11.2)] [88], and has
demonstrated promising results in the treatment of
CRLF2-rearranged, JAK2-mutated leukemic cells in vitro
[87]. Additionally, the PI3K inhibitor, rapamycin, has
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been shown to control leukemic burden [88]. Clinical
trial NCT01251965, utilizing ruxolitinib in refractory or
relapsed ALL or AML (acute myelogenous leukemia), is
currently ongoing.

More recently, another potential molecular target in
JAK2-mutated B-ALL was revealed. In a mouse model,
overexpression of mutant JAK2 led to downstream upreg-
ulation of prosurvival Bcl-2 gene family members, and
combined use of the Bcl-2/Bcl-xL inhibitor ABT-737 with
JAK2 inhibitors prolonged disease regression time [89].

PAXS5 deletions and rearrangements

PAXS (9p13), a member of the paired box gene family, is
a transcription factor necessary for normal hematopoietic
development [90]. In childhood B-ALL, mutations in PAX
5 have been detected in 32% of cases by genome-wide ana-
lysis [75]. PAXS rearrangements occur with incidence of
about 2.5%, with numerous reported rearrangements in-
cluding ETV6 (12p13) and JAK2 (9p24) [91]. Recently, a
heterozygous germline PAXS variant, ¢.547G > A, encod-
ing p.Gly183Ser, was identified in two unrelated families
with autosomal dominant B-ALL, suggesting that PAXS5
mutations may play a role in the inherited susceptibility of
B-ALL [92].

FLT3 mutations

FLT3 (fms-tyrosine kinase 3) on chromosome 13ql2 is
frequently mutated in MLL-rearranged and high hyper-
diploid B-ALL [93]. Infants with MLL-rearrangements
have been shown to be sensitive to the FLT3 inhibitor,
PKC412 (midostaurin), suggesting that multitarget kin-
ase inhibition may present as novel therapeutic modal-
ities [94]. COG study AALL0631, utilizing the FLT3
inhibitor lestaurtinib (CEP701) along with standard
chemotherapy, is currently ongoing in infants with MLL
rearrangements.

The role of epigenetics

The role of epigenetic regulation in B-ALL has gained
considerable attention. In 2013, the first integrated
genome-wide analysis in childhood ALL, incorporating
cytosine methylation profiling, DNA copy number alter-
ations (CNA) and GEP, was reported [95]. Recurrent
epigenetic alterations were identified across all B-ALL
subtypes studied, suggesting that certain epigenetic
events are required for leukemic transformation [95].
Moreover, genes frequently affected by structural abnor-
malities were shown to be targets for aberrant DNA
methylation [95]. Additionally, global histone modifica-
tion profiling revealed a distinct molecular chromatin
signature in several ALL cell lines, subsequently noted
to harbor abnormalities in NSD2, encoding for a methyl-
transferase [96]. Targeted investigation of patient sam-
ples revealed approximately 7.5% of childhood B-ALL
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harbored mutations in WHSCI/NSD2 (particularly p.E10
99K) but were enriched the B-ALL subtypes ETV-RUNXI
(20%) and TCF3-PBX1 (15%) [96]. More recently, NGS tar-
geted exome profiling identified a number of epigenetic reg-
ulators, including CREBBP and SETD2, mutated in 25% of
B-ALL samples at time of diagnosis [97]. Further analysis re-
vealed that mutations in SETD2 were enriched in MLL-rear-
ranged (22%) and the ETV-RUNXI (13%) subtypes of
B-ALL, and that over 50% of matched relapsed cases, re-
gardless of subtype, demonstrated enrichment of mutations
in epigenetic regulators (discussed more below) [97].
Epigenetic studies have also shown insights into our
understanding of MLL-rearranged B-ALL. MicroRNAs
(miRNAs), short noncoding RNAs involved in the
regulation of signaling pathways of cell differentiation,
proliferation, and apoptosis, have been shown to pro-
mote leukemogenesis through aberrant epigenetic activ-
ity [98]. The presence of these epigenetic aberrancies
suggests that histone deacetylase (HDAC), DNA methyl-
transferase (DNMT), and/or histone methyltransferase
(HMT) inhibitors may play a therapeutic role in MLL-
rearranged B-ALL [99,100]. Notably, selective DOT1L
HMT inhibitors, such as EPZ-004777, have been shown
to selectively destroy MLL-rearranged cells in mouse
models [101,102]. Clinical trial NCT01684150 is cur-
rently evaluating the use of the DOT1L HMT inhibitor,
EPZ-5676, in adults with MLL-rearrangements.

Relapsed ALL

Despite overall progress in treatment, relapsed B-ALL
has a dismal prognosis with an overall survival of 30%
[103]. Several genetic subtypes and aberrations are
associated with high treatment failure risk, including
CDKN2A/B, ETV6, and IKZF1 (Ikaros) mutations. Re-
lapse occurs across the spectrum of all B-ALL subtypes,
with some cases demonstrating acquisition of additional
chromosomal abnormalities over time. In 2008, genome-
wide analysis of matched samples from diagnosis and re-
lapse identified different patterns of genomic CNA for
samples at diagnosis and relapse, with that acquired ab-
normalities preferentially affected cell cycle regulation
and B-cell development genes [104]. They determined
that only 8% of relapse clones carried identical CNA to
the diagnostic clone, while almost 90% of relapse clones
evolved to acquire additional or some but not all CNA
from the diagnostic clone [104], highlighting that relapse
in ALL is variable and complex, but often a descendent
of an ancestral clone to the principal de novo leukemia
clone (reviewed in [105]).

Gene sequencing studies in 2011 [106] and 2012 [107],
demonstrated 20% of total pediatric ALL relapse cases
[106] and 60% of high-hyperdiploid relapse cases [107]
harbor mutations in CREBBB, a transcriptional co-activator
and histone acetyltransferase (HAT). Mutations in CREB
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BP have been shown to affect the regulation of glucocortic-
oid responsive genes. Because glucocorticoids are the
cornerstone of B-ALL therapy, CREBBP mutations are
thought to influence response to treatment and influence
the likelihood for relapse [108]. In this regard, a recent
study identified a selective enrichment of mutations in
CREBBP and other epigenetic regulators (SETD2, KDM6A,
MLL2, and MSH6) in relapsed and/or chemoresistant
childhood B-ALL, which could suggest that epigenetic
regulation plays a central role in clonal survival and ultim-
ately chemotherapy resistance and relapse [97]. In addition
to mutations in CREBBP and SETD?2, relapse-specific
mutations in the NT5C2 gene have been described in
childhood B-ALL [109,110]. NT5C2 is a 5’ nucleotidase re-
sponsible for the inactivation of nucleosidase-analog drugs,
therefore conferring resistance to conventional therapeutic
agents such as 6-mercaptopurine (6-MP) [109].

Although the true prognostic importance of these
mutations at both diagnosis and relapse is unknown,
therapies aimed at modulating epigenetic regulators in
B-ALL is already in clinical development, as mentioned
previously. Interstingly, CREBBP has also been shown to
play a role in Wnt/B-catenin signaling, a pathway critical
for the self-renewal of normal hematopoietic progenitor
cells. In this regard, ICG-001, a novel small-molecule
modulator of Wnt/B-catenin signaling that binds to
CREBBD, leads to the differentiation of pre-B ALL cells
and loss of self-renewal capacity, thereby sensitizing cells
to chemotherapeutic treatment [111].

Conclusions

Advances in genetic technologies have enriched our current
understanding of childhood B-ALL. Although conventional
karyotyping and FISH technologies play a significant role in
detecting numerous recurrent abnormalities, microarray-
based techniques and NGS have revealed a multitude of
new molecular targets that may prove useful in the diagno-
sis, risk stratification, and most importantly individualized
treatment of this disease.
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