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Abstract 

Breast cancer is the most common malignancy and the second leading cause of cancer-related death in women. 
Recent studies have indicated that aberrant activation of Rho GTPases relates to the malignant properties of breast 
cancer cells. As the guanine nucleotide exchange factor of Rho GTPases, the role of ECT2 (epithelial cell transform-
ing 2) in breast cancer is still unclear. Tissue microarrays and multiple public databases were utilized to investigate 
the relationship between ECT2 level and clinical-pathological features of breast cancer patients. Kaplan Meier-plotter 
online tool and tissue microarray with survival information were used to investigate the predictive value for breast 
cancer. Here, we found increased ECT2 level was highly associated with advanced TNM stage, poor differentiation, 
and loss of hormone receptors of breast cancer. Gene expression profile showed that ECT2 level was closely cor-
related to cell-proliferation-associated pathways. Integration analysis using public databases and tissue microarray 
indicated that high ECT2 was an adverse prognostic factor for breast cancer patients. We believe the ECT2 level might 
be a valuable complement for commercially available predictors such as the 21 genes test. Furthermore, ECT2 would 
be a novel target for drug development for breast cancer.
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Introduction
Breast cancer is the most common malignancy and the 
second leading cause of cancer-related death in women 
[1–4]. According to the level of estrogen receptor (ER), 
progesterone receptor (PR), and human epidermal 
growth factor 2 (Her2), breast cancers are classified into 
multiple subtypes: Luminal, Her2 overexpression, Basal-
like, and Normal-like [5]. Propelled by the fundamental 
investigation of tumor biology, breast cancer therapeu-
tics have progressed substantially in the past decades 
[6]. Locoregional tumor load, together with molecular 

subtype, determines the therapeutic regimen of breast 
cancer [7–10]. Further exploration of molecular mecha-
nisms contributing to tumor progression is meaningful 
to the development of novel therapies [11–15]. Notably, 
immunotherapy, especially immune checkpoint inhibi-
tors, brings new hope to the treatment of breast cancer 
[16–20]. Recent studies have indicated that aberrant acti-
vation of Rho GTPases relates to the malignant biological 
behavior of breast cancer cells [21–23].

ECT2 (epithelial cell transforming 2) is a guanine 
nucleotide exchange factor of Rho GTPases (e.g. RhoA, 
Rac1, and Cdc42) [24]. ECT2 converts the status of Rho 
GTPases from inactive state to active state via replacing 
bound GDP with GTP, further promoting actin remod-
eling [25]. It has been verified that ECT2 mainly plays a 
vital role in cytokinesis. In M phase, ECT2 is recruited to 
central spindle and activates Rho signaling pathway, sub-
sequently inducing contractile ring formation and con-
traction [26]. Loss of ECT2 interferes with cytokinesis 
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without remarkable effects on mitosis, which ultimately 
promotes the generation of binucleate cells [27].

Besides normal cellular activity, ECT2 also participates 
in malignant transformation, tumor initiation, and metas-
tasis [28]. The tumorigenic role of ECT2 changes along 
with its subcellular location. Full-length ECT2 protein 
contains a nuclear localization signal (N-terminal) and 
dominantly distributes in the nucleus [29]. Independent 
of cytokinesis regulation, nuclear ECT2 promotes malig-
nant transformation in other manners [30]. In lung ade-
nocarcinoma cells, nuclear ECT2 recruits and activates 
Rac1, which increases ribosome biogenesis and supports 
transformed growth (anchorage-independent growth) 
[31, 32]. Besides, in ovarian cancer cells, ECT2 is retained 
in cytoplasm by binding to protein kinase Cι-Par6α com-
plex [30]. Cytoplasmic ECT2-protein kinase Cι-Par6α 
complex subsequently activates Rac1-Pak-Mek-Erk sign-
aling pathway, which promotes cell cycle progression 
and proliferation [30]. Moreover, explorations in human 
hepatocellular carcinoma cell confirmed ECT2 as a 
multiple-functional oncogenic protein that upregulates 
Rho-Erk signal, promotes cell proliferation, suppresses 
apoptosis, and induces distant metastasis [33]. It has 
been detected that ECT2 was overexpressed in various 
cancers, including non-small lung cell cancer, glioblas-
tomas, and prostate cancer [31, 34–36]. Generally, high 
ECT2 level is an unfavorable factor for patient prognosis 
[37, 38]. However, there are rare studies investigating the 
role of ECT2 in breast cancer.

In this study, by combining samples from tissue micro-
arrays and gene expression data from public databases, 
we retrospectively evaluated the expression of ECT2 
in breast cancer and non-cancer tissues. Moreover, we 
explored the relationship between ECT2 abundance and 
clinic-pathologic features as well as clinical outcomes 
of patients with breast cancer. Collectively, we explored 
the involvement of ECT2 in breast cancer development 
which would be a potential predictive biomarker and 
treatment target.

Materials and methods
Breast tissue samples
Tissue microarray Br2082a was obtained from Xi’an 
Alena-bio Ltd which contained 32 metastatic carcinoma, 
120 primary carcinoma, 8 fibroadenoma, 16 hyperpla-
sia, 16 inflammation, and 16 adjacent normal breast tis-
sues. However, some clinical-pathological parameters 
and surviving data of samples were not given in Br2082a. 
Therefore, another tissue microarray with detailed path-
ological parameters (HBreD145Su01, Shanghai Outdo 
Biotech Ltd.) was involved for further analysis. The clin-
ical-pathological features of breast cancer patients in 
HBreD145Su01 cohorts are shown in Table 1.

Public breast cancer datasets acquisition and process
We searched GEO database (http:// www. ncbi. nlm. nih. 
gov/ geo/) to select eligible breast cancer datasets for 
pooled analysis. The searching and selecting strategies 
followed the methods we previously described [39]. The 
detailed information of involved datasets in the meta-
analysis was listed in Additional file  1: Table  S1. Odds 
ratio (OR) with 95% confidence interval (95% CI) was 
utilized to assess the correlation between ECT2 mRNA 
level and clinic-pathological markers. Patient outcomes, 
including overall survival (OS), relapse-free survival 
(RFS) and metastasis-free survival (MFS) were evaluated 
by hazard ratio (HR) and 95% CI. The Stata software (ver-
sion 12.0) was used in this meta-analysis. Transcriptional 
profiling of ECT2 gene and other genes was downloaded 
from TCGA database (https:// xenab rowser. net/), pro-
cessed and analyzed by SPSS software (version 24.0).

Online analysis tool
Online analysis tool Kaplan Meier-plotter could plot 
Kaplan–Meier survival curve with log-rank test analy-
sis (http:// kmplot. com). The background data of Kaplan 
Meier-plotter are obtained from GEO and TCGA data-
bases. Adopting median ECT2 expression as cutoff value, 
Kaplan–Meier survival curves were generated and down-
loaded from this website.

Table 1 Correlations between ECT2 expression and clinic-
pathological features of 120 breast cancer patients in 
immunohistochemistry chip (HBreD145Su01)

a Pearson Chi-square test

Variables N ECT2 expression P value

< 8 (low 
expression)

 ≥ 8 (high 
expression)

Age 0.224a

 < Median(51) 57 28 29

 ≥ Median (51) 63 24 39

Tumor location 0.961a

 Left 58 25 33

 Right 62 27 35

Grade 0.073a

 Grade 1 25 16 9

 Grade 2 90 44 56

Stage 0.043a

 Stage I–II 75 37 38

 Stage III–IV 43 13 30

Subtype 0.0041a

 Luminal 89 46 43

 Her2 enriched 13 4 9

 Basal 18 2 16

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/
http://kmplot.com
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Fig. 1 The expression level of ECT2 in breast cancer, benign disease, and normal breast tissues. A Pooled analysis of GEO datasets showing ECT2 
mRNA level in breast cancer and normal tissues. B TCGA breast cancer dataset showing the level of ECT2 mRNA level in breast cancer and normal 
tissues. C The representative immunohistochemical staining images showing ECT2 protein expression in breast cancer and normal tissues. D 
Histogram showing ECT2 protein expression in breast cancer, benign disease, and normal breast tissues. E Histogram showing ECT2 protein 
expression in lymphatic metastasis and primary breast cancer tissues. Scale bar: 100 μm
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Immumohistochemical staining assay
Immunohistochemical (IHC) staining was conducted fol-
lowing the standard protocol described previously [40]. 
The specific primary antibody against ECT2 (catalog no. 
07-1364; Millipore Corporation, Billerica, MA, USA, 
1:150) was used for the IHC assay. The stained images 
were captured by a light microscope with the image pro-
cessing system (Sunny Optical, China). The IHC scores 
were evaluated by two experienced pathologists without 
patient information. Based on Fromowitz Standard, the 
multiplication of intensity and proportion of positively 
stained cancer cells represents the abundance of ECT2. 
The intensity was scored according to color shade: 0 
(no staining), 1 (light yellow), 2 (yellow–brown), and 
3 (brown). The proportion of stained cancer cells was 
scored as: 1 (0–25%), 2 (26–50%), 3 (51–75%), and 4 
(76–100%).

Bioinformatics analysis
The biological significance of ECT2 for breast can-
cer was explored using bioinformatics analysis. Based 
on TCGA and GSE25066 datasets, the enriched Gene 
ontology (GO) terms and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways in high ECT2 tumors 
were calculated. Pathways or Terms with adjusted P 
value < 0.05 and fold change > 2 were regarded as statisti-
cally significant [18, 41]. Gene Set Enrichment Analysis 
(GSEA) was performed to explore the enriched pathways 
in high ECT2 tumors [19, 42]. R software (4.1.2) and 
packages DESeq2, ggplot2, and ClusterProfile were used 
in this assay.

Statistical analysis
The Student’s t-test was used to compare the difference 
between two groups with the significance cutoff as 0.05. 

Fig. 2 The correlation between ECT2 expression and TNM stage. A Gene expression profile from GSE25066 showing that the percentage of 
patients with high ECT2 mRNA and low high ECT2 mRNA in different TNM stage groups. B Pooled analysis showing the correlation between ECT2 
mRNA and TNM stage. C Data from tissue microarray showing the relationship between ECT2 protein level and TNM stage. Scale bar: 100 μm

(See figure on next page.)
Fig. 3 Pooled analysis showing the correlations between ECT2 mRNA and molecular biomarkers of breast cancer. A Pooled analysis showing the 
correlations between ECT2 mRNA level and differentiation grade. B Pooled analysis showing the correlations between ECT2 mRNA level and ER 
status. C Pooled analysis showing the correlations between ECT2 mRNA level and PR status. D Pooled analysis showing the correlations between 
ECT2 mRNA level and HER2 status. E, F Pooled analysis showing the correlations between ECT2 mRNA level and subtypes of breast cancers
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Fig. 3 (See legend on previous page.)



Page 6 of 14Yi et al. Experimental Hematology & Oncology          (2022) 11:107 

Correlations were analyzed using Person χ2 test. The 
cumulative survival was analyzed using Kaplan–Meier 
curve with log-rank test. Univariate and multivariate 
analyses were conducted by the Cox proportional haz-
ards regression model.

Results
Increased ECT2 expression in breast cancer
To explore the role of ECT2 in breast cancer, we first 
assessed the ECT2 expression in breast cancers and 
normal breast tissues. Pooled analysis of GEO data-
sets demonstrated that ECT2 mRNA level was upregu-
lated in breast cancer tissues relative to normal tissues 
(OR = 2.78, 95%CI = 1.82–4.24) (Fig.  1A). ECT2 mRNA 
data from TCGA showed significantly elevated ECT2 
mRNA in breast cancer tissues as well (P < 0.0001) 
(Fig.  1B). Breast samples of the tissue microarray con-
tained breast cancer, benign disease, and normal breast 
tissues. IHC results indicated that ECT2 protein was 
increased in breast cancer tissues compared with non-
cancer tissues (Fig.  1C, D). Among 152 breast cancer 
tissues, samples from lymphatic metastasis exhibited 
higher ECT2 expression relative to primary breast cancer 
(Fig. 1E).

Correlations between ECT2 expression 
and clinic‑pathologic features of breast cancer patients
In order to further verify the clinical significance of 
increased ECT2 for breast cancer patients, we inter-
rogated the relationship between ECT2 expression and 
clinic-pathologic parameters, including TNM stage 
(based on tumor size, lymph node involvement and dis-
tant metastasis), and molecular subtype.

ECT2 expression was related to TNM stage. Gene 
expression profile from GSE25066 showed that the per-
centage of patients with upregulated ECT2 mRNA was 
higher in the stage III–IV group (Fig. 2A). Pooled analy-
sis showed that increased ECT2 mRNA significantly cor-
related with advanced TNM stage (Pooled OR = 1.54, 
95%CI 1.11–2.13) (Fig.  2B). ECT2 protein abundance 
data from tissue microarray demonstrated that upregu-
lated ECT2 protein correlated with advanced TNM stage 
(P < 0.05) (Fig. 2C).

Elevated ECT2 expression was correlated to molecular 
biomarkers and subtypes of breast cancer. ECT2 mani-
fested remarkably high transcriptional level in poorly dif-
ferentiated tumor (Pooled OR = 3.95, 95%CI 3.40–4.59) 
(Fig.  3A) but low transcriptional level in ER + (Pooled 
OR = 0.45, 95%CI 0.39–0.53) (Fig. 3B) and PR + (Pooled 
OR = 0.52, 95%CI 0.42–0.64) patients (Fig.  3C). On the 
contrary, ECT2 mRNA was upregulated in Her2-over-
expressed tissue (Pooled OR = 1.60, 95%CI 1.22–2.09) 
(Fig.  3D), Basal-like subtype (Pooled OR = 3.06, 95%CI 
2.31–4.05) (Fig. 3E), as well as Her2 overexpression sub-
type (Pooled OR = 3.23, 95%CI 2.11–4.95) (Fig. 3F). IHC 
scoring results showed that the abundance of ECT2 pro-
tein was markedly upregulated in poorly differentiated 
(Fig.  4A), ER- (Fig.  4B), PR- (Fig.  4C) breast cancers. 
However, there was no significant difference between 
Her2-amplificated and non-amplificated cancers 
(Fig. 4D). Additionally, ECT2 protein level was highest in 
Basal-like subtype breast cancers (Fig. 4E).

The biological significance of ECT2 for breast cancer
To investigate the biological significance of ECT2 for 
breast cancer, we performed KEGG and GO enrichment 
analysis using TCGA and GEO databases. The results 
showed cell proliferation-associated pathways were sig-
nificantly enriched in high ECT2 tumors, including cell 
cycle, cell division, mitotic sister chromatid segregation, 
mitotic spindle assembly checkpoint, chromosome segre-
gation, mitotic spindle organization, G2/M transition of 
mitotic cell cycle, DNA replication initiation, regulation 
of attachment of spindle microtubules to kinetochore, 
and kinetochore assembly (Fig.  5A, B). The results of 
GSEA also demonstrated that DNA proliferation and cell 
cycle were significantly enriched in high ECT2 tumors 
(Fig. 5C–F).

Additionally, as mentioned above, ECT2 plays a vital 
role in cell proliferation by regulating cytokinesis. PCNA 
and MKI67 are well-accepted proliferation-associated 
markers. Therefore, we explored the relationship between 
ECT2 expression and PCNA and MKI67. We found that 
ECT2 expression was highly correlated with cell prolif-
eration-associated markers such as PCNA and MKI67 
(Fig. 6A–D). Our results indicated ECT2 participated in 

Fig. 4 Data from tissue microarray showing the relationship between ECT2 protein level and molecular biomarkers of breast cancer. A 
The representative immunohistochemical staining images showing ECT2 protein expression in Grade 1 and Grade 2 breast cancers. B The 
representative immunohistochemical staining images showing ECT2 protein expression in ER+ and ER− breast cancers. C The representative 
immunohistochemical staining images showing ECT2 protein expression in PR+ and PR− breast cancers. D Histogram showing ECT2 protein 
expression in Her2-amplificated and non-amplificated breast cancers. E Histogram showing ECT2 protein expression in different subtypes of breast 
cancers. Scale bar: 100 μm

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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cell proliferation, which might contribute to the malig-
nant biological properties of breast cancer.

Elevated ECT2 expression heralded poor prognosis 
of breast cancer patients
To assess whether ECT2 expression could predict the 
prognosis of breast cancer patients, we conducted pooled 
analysis and found that higher ECT2 mRNA level related to 
shorter OS (Pooled HR = 1.37, 95%CI 1.19–1.58) (Fig. 7A) 
and RFS (Pooled HR = 1.17, 95%CI 1.03–1.33) (Fig.  7B). 
Survival analysis by online tool Kaplan Meier-plotter 
showed elevated ECT2 mRNA level indicated poor prog-
nosis of breast cancer patients (PFS: HR = 1.69, log-rank 
P < 0.0001; OS: HR = 1.44, log-rank P = 0.001; Distant 
metastasis-free survival: HR = 1.47, log-rank P = 0.00016; 
Post progression survival: HR = 1.52, log-rank P = 0.00091) 
(Fig. 7C–F). Based on patient survival data and ECT2 pro-
tein level, survival analysis demonstrated that patients with 
high ECT2 had shorter OS (HR = 6.64, log-rank P < 0.0001). 
Cox regression analysis showed that ECT2 expression is an 
independent prognostic factor for breast cancer patients 
(Table 2).

Discussion
In this study, by comprehensive analysis of GEO database, 
TCGA breast cancer dataset, and samples of tissue micro-
arrays, we found that ECT2 expression (at transcriptional 
and translation levels) was significantly increased in breast 
cancers compared with non-cancer tissues. Moreover, 
increased ECT2 expression was related to clinic-pathologic 
parameters especially advanced TNM stage. We also found 
ECT2 was remarkably higher in breast cancers belonging 
to Her2 overexpression and Basal-like subtypes. In general, 
elevated ECT2 level was a potential biomarker predicting 
poor prognosis of breast cancer patients. The oncogenic 
role of ECT2 could be partly fulfilled by enhancing malig-
nant transformation, invasion, and migration activities.

ECT2 is a vital regulator of cell division via modifying the 
activation of small GTPases of Rho family (e.g. RhoA, Rac1, 
and Cdc42) [43]. It has been well established that ECT2 
activates Rho-Citron kinase pathway which subsequently 
phosphorylates the myosin heavy chain kinase, induces 
the formation of contractile ring, and promotes cytokine-
sis [44]. Apart from cytokinesis, ECT2 also participates in 
mitosis by impairing the attachment between mitotic spin-
dles and kinetochores [45]. In situ hybridization confirmed 
that ECT2 level was a biomarker reflecting the proportion 

of cells undergoing mitosis [46]. In line with the role of 
ECT2 in cell proliferation, we also found a positive corre-
lation between ECT2 abundance and proliferation-associ-
ated biomarkers. Besides, it has been verified that increased 
ECT2 abundance directly activates the downstream MAPK 
signaling pathway, further accelerating cell cycle progres-
sion and proliferation [33, 47]. Cell proliferation could 
be effectively inhibited by interfering ECT2 expression 
[48–50]. Accumulated ECT2 in multiple cancers indicates 
hyperactive cell division and proliferation [37, 51]. Inter-
vention targeting factors driving the uncontrolled prolifera-
tion and disordered cell cycle have always been a hot topic 
for developing anti-tumor agents [52–55]. Blocking ECT2 
and its downstream signaling pathway would be meaning-
ful to transform tumor cells from hyperactive proliferation 
towards non-division state.

Mis-localized ECT2 relates to malignant transforma-
tion, aberrant cell proliferation, and distant metastasis 
[56]. In cancer tissues, we found abnormal ECT2 staining 
in cytoplasm. However, in non-cancer tissue, ECT2 stain-
ing was only detected in nuclear. It was reported that the 
splicing variant of ECT2 lacked nuclear localization signal 
[57]. Even though the oncogenic role of splicing variant of 
ECT2 without nuclear localization signal was verified in 
mice model, human cancer cells express full-length ECT2. 
It is generally believed that transforming ECT2 variant is 
not related to human cancers. Other factors influencing 
the subcellular location of ECT2 such as Protein kinase 
Cι-Par6α complex, are meaningful to counteract malignant 
behaviors of breast cancers [31, 58].

Besides promoting cell proliferation, the oncogenic role 
of ECT2 could be attributed to ECT2-Rho pathway-medi-
ated cellular transformation and metastasis [30]. In mice 
fibroblast models, cytoplasmic ECT2 showed constitutive 
guanine nucleotide exchange factor activity and effectively 
induced transformation, while nuclear ECT2 exhibited no 
malignant transformation activity [28]. In the interphase, 
due to containing nuclear localization signal, ECT2 is gen-
erally separated in nucleus to avoid the activation of down-
stream Rho GTPases [59]. However, accumulated ECT2 
in the cytoplasm of cancer cell leads to hyperactive Rho 
GTPases, which promotes epithelial-to-mesenchymal tran-
sition, loss of cell polarization, formation of invadopodia/ 
lamellipodia/ filopodia, and tail retraction [24, 30]. As a 
result, cancer cells undergo malignant transformation with 
enhanced capabilities of migration, invasion, and metasta-
sis. We found ECT2 expression was markedly elevated in 

(See figure on next page.)
Fig. 5 KEGG and GO enrichment analysis using TCGA and GEO databases. A Data from TCGA showing enriched pathways or termed in high ECT2 
breast cancers. B Data from GSE25066 showing enriched pathways or termed in high ECT2 breast cancers. C GSEA indicating the enrichment of 
DNA replication pathway in high ECT2 breast cancers (Based on TCGA). D GSEA indicating the enrichment of cell cycle pathway in high ECT2 breast 
cancers (Based on TCGA). E GSEA indicating the enrichment of DNA replication pathway in high ECT2 breast cancers (Based on GSE25066). F GSEA 
indicating the enrichment of DNA replication pathway in high ECT2 breast cancers (Based on GSE25066)
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Fig. 5 (See legend on previous page.)
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metastatic breast cancer tissues relative to non-metastatic 
tissues. It has been documented inhibiting the activity of 
ECT2-Rho pathway could effectively inhibit breast cancer 
metastasis via modifying actin cytoskeleton remodeling 
[60]. Given that distant metastasis, together with recur-
rence, are major causes of breast cancer-related deaths, 
upregulated ECT2 signaling is a potential target to inhibit 
the generation of metastatic lesions.

Collectively, increased ECT2 level is highly associated 
with advanced TNM stage, poor differentiation, and loss 

of hormone receptors of breast cancer. Integration analysis 
using GEO public database and tissue microarray indicates 
that high ECT2 is an adverse prognostic factor for breast 
cancer patients. We believe the ECT2 level might be a valu-
able complement for commercially available predictors 
such as the 21 genes test. Besides, ECT2 would be a novel 
target for drug development for breast cancer.

Fig. 6 The correlation between ECT2 expression and cell proliferation-associated markers. A Data from TCGA showing correlation between ECT2 
expression and PCNA level. B Data from TCGA showing correlation between ECT2 expression and MKI67 level. C Data from GSE25066 showing 
correlation between ECT2 expression and PCNA level. D Data from GSE25066 showing correlation between ECT2 expression and MKI67 level
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Fig. 7 The predictive value of ECT2 for the prognosis of breast cancer patients. A Pooled analysis showing the relationship between ECT2 mRNA 
level and overall survival. B Pooled analysis showing the relationship between ECT2 mRNA level and progression-free survival. C Survival curves 
showing the relationship between ECT2 mRNA level and relapse-free survival (data from Kaplan–Meier plotter). D Survival curves showing the 
relationship between ECT2 mRNA level and overall survival (data from Kaplan–Meier plotter). E Survival curves showing the relationship between 
ECT2 mRNA level and distant metastasis-free survival (data from Kaplan–Meier plotter). F Survival curves showing the relationship between ECT2 
mRNA level and post-progression survival (data from Kaplan–Meier plotter). G Survival curves showing the relationship between ECT2 protein level 
and overall survival (data from tissue microarray)
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