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Abstract 

RHO GTPases are a subfamily of the RAS superfamily of proteins, which are highly conserved in eukaryotic species 
and have important biological functions, including actin cytoskeleton reorganization, cell proliferation, cell polarity, 
and vesicular transport. Recent studies indicate that RHO GTPases participate in the proliferation, migration, invasion 
and metastasis of cancer, playing an essential role in the tumorigenesis and progression of hepatocellular carcinoma 
(HCC). This review first introduces the classification, structure, regulators and functions of RHO GTPases, then dissects 
its role in HCC, especially in migration and metastasis. Finally, we summarize inhibitors targeting RHO GTPases and 
highlight the issues that should be addressed to improve the potency of these inhibitors.
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Introduction
The RHO GTPases form a subfamily of the RAS super-
family of GTP-binding proteins with a size of 21 to 
25 kDa which are found in all eukaryotic cells. The first 
RHO GTPase protein was discovered in the abdomi-
nal ganglia of Aplysia in 1985 [1]. RHO GTPases have 
a conserved primary structure with 50–55% sequence 
similarity to each other [2]. However, it was observations 
reported years later that put forward the perception of 
the cellular function of RHO GTPases, mainly linked to 
the actin cytoskeleton [3–5], and further studies demon-
strated that they regulate many other signal transduction 
pathways. They are involved in the modulation of cell 
proliferation control, cell polarity, development, vesicu-
lar transport pathways and other aspects of cell biol-
ogy [6]. Conversely, the dysregulation of RHO GTPases 

is associated with various diseases such as inactivat-
ing mutation in T cell lymphoma [7], overexpression in 
hypertension [8], and abnormal activation in arthritis [9].

Hepatocellular carcinoma (HCC) is the leading cause 
of cancer-related death worldwide, especially the over-
all survival of patients with advanced HCC should be 
improved [10]. Exploring the pathogenesis of HCC may 
help us out of this woods. Strikingly, aberrant expres-
sion of RHO GTPase was found to contribute to HCC 
progression [11], especially migration and metastasis. 
Furthermore, RHO GTPases are regarded as potential 
diagnostic biomarkers or therapeutic targets for cancer 
[12, 13]. However, the underlying mechanisms through 
which RHO GTPases contribute to HCC initiation and 
progression remain poorly understood.

In this review, we first introduce the classification, 
structure, regulators and functions of RHO GTPases, 
then dissect their role in HCC initiation and develop-
ment, especially in migration. Finally, we discuss inhibi-
tors targeting the RHO GTPases and highlight the issues 
that should be addressed to improve the potency of these 
inhibitors.
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RHO GTPase family in biology
According to their structural similarity, sequence, and 
intracellular functions, the RAS superfamily of GTPases 
is divided into five main groups: RAS, RHO, RAB, ARF 
and RAN. Among them, RHO family GTPases have 
recently been expanded to over 20 members [14], and 
some of them have been extensively studied, including 
RHOA, RAC1 and CDC42. What’s more, most of them 
are highly conserved among eukaryotic species [15]. 
Activated by extracellular factors such as soluble mole-
cules, adhesion interactions, and mechanical stress, RHO 
GTPases can initiate signaling cascades that span a wide 
range of targets or effectors, including kinases and scaf-
fold/adaptor-like proteins [16]. The activation and inac-
tivation of RHO GTPases is mainly regulated by three 
upstream factors: the guanine nucleotide dissociation 
inhibitors (GDIs), guanine nucleotide exchange factors 
(GEFs), and GTPase-activating proteins (GAPs).

RHO Family GTPases
RHO GTPases can be classified into eight subfami-
lies based on their sequence homology, including RHO 
(RHOA–RHOC), RAC (RAC1–RAC3 and RHOG), 
CDC42 (CDC42, RHOJ/TCL and RHOQ/TC10), 
RHODF (RHOD and RHOF/RIF), RHOUV (RHOU/
WRCH1 and RHOV/CHP), RND (RND1, RND2, 
RND3/RHOE), RHOH, and RHOBTB (RHOBTB1 and 

RHOBTB2) (Fig. 1). RHO GTPases typically contain a G 
domain and a C-terminal hypervariable region (Fig.  2). 
The G domain consists of five conserved sequence 
motifs, G1 to G5, which constitute a conserved GDP/
GTP-binding domain that participates in nucleotide 
binding and hydrolysis. The C-terminal hypervariable 
region ends with a common sequence, which is known 
as CAAX (C: cysteine, A: any aliphatic amino acid, and 
X: any amino acid) [17] and modification at this sequence 
are crucial for the subcellular localization of RHO 
GTPases [18]. Switch I/II regions of RHO GTPase are the 
common binding sites for GEFs, GDIs, GAPs, or effec-
tors, and change their conformation during the nucleo-
tide exchange and hydrolysis cycle (Fig.  2) [17]. RHO 
GTPases are generally expressed ubiquitously, but there 
are exceptions such as RHOH, RAC2, RHOBTB and 
RND3 which express in the specific cell [15].

RHO GTPases can also be classified into a classical 
subfamily and an atypical subfamily bases on their struc-
ture, kinetic properties and other features. The former 
includes the four subfamilies RHO, RAC, CDC42 and 
RHODF, which are regulated by GDP/GTP exchange and 
exert the main functions of the RHO GTPase family [19]. 
By contrast, some RHO GTPase members do not follow 
this classical GTPase cycle, and are consequently consid-
ered atypical. Some of them have a remarkably enhanced 
intrinsic GDP/GTP activity, while some fail to hydrolyze 

Fig. 1 RHO GTPase family. The unrooted phylogenetic tree of the RHO GTPase family was based on the Clustal Omega program alignment of the 
amino‑acid sequences of the 20 RHO GTPase proteins. RHO GTPases can be classified into eight subfamilies: RHO, RAC, CDC42, RHODF, RHOUV, RND, 
RHOH and RHOBTB. These subfamilies are highlighted with circles and labeled on the right side. The classical RHO GTPases include four subfamilies: 
RHO, RAC, CDC42 and RHODF, which are regulated by the GDP/GTP cycle. The atypical RHO GTPases comprise the RHOUV, RND, RHOH and RHOBTB 
subfamilies. These GTPases are regulated by gene expression, localization, phosphorylation, and/or protein stability and not by GEF and GAP



Page 3 of 18Wang et al. Experimental Hematology & Oncology           (2022) 11:91  

GTP, and were respectively named the fast-cycling RHO 
GTPases (RHOUV), and hydrolysis-deficient RHO 
GTPases (RND, RHOH and RHOBTB) [20]. In addition 
to control by GEFs and GAPs, these GTPases are regu-
lated at the level of gene expression, localization, phos-
phorylation, and/or protein stability, and their functions 
involve additional domains that are not present in typical 
RHO proteins [21].

Upstream regulators of RHO GTPases
Similar to other members of the RAS superfamily, the 
activity of RHO GTPases is determined by the ratio of 
their GTP/GDP-bound forms inside the cell. Although 
the RHO switch itself that transmits extracellular cues 

to intracellular signaling pathways is straightforward, it 
is intricately regulated by three main classes regulatory 
proteins (Fig.  3): GEFs, GDIs, and GAPs. Among them, 
GEFs positively regulate RHO GTPases, while GAPs and 
GDIs exert negative regulation. In humans, there are 85 
GEFs, 66 GAPs, and 3 GDIs, which mediate the precise 
regulation of RHO GTPases [17].

GEFs
RHO GTPases are generally activated by GEFs, which 
can bind to the GDP-bound form, destabilize the GDP-
GTPase complex and stabilize a nucleotide-free reac-
tion intermediate by deforming the phosphate-binding 
site of RHO GTPase at the same time, instead of directly 

Fig. 2 Domains of RHO GTPases. RHO GTPases typically contain a G domain, which is a conserved GDP/GTP‑binding domain that participates in 
nucleotide binding and hydrolysis. Switch I/II regions of RHO GTPase are the common binding sites for GEFs, GDIs, GAPs, or effectors, and undergo 
conformational changes during the nucleotide exchange and hydrolysis cycle. The C‑terminal hypervariable region ends with a common sequence, 
which is known as CAAX, and modification at this sequence is crucial for subcellular localization of RHO GTPases
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stimulating the binding of the RHO GTPase to GDP/
GTP [22]. Then, the high intracellular concentration 
of the nucleotide becomes the only determinant of the 
binding of RHO GTPase to GTP. As the free nucleo-
tide-binding site of RHO GTPase has a similar affinity 
for GTP and GDP, while the GTP concentration is ten-
fold higher than that of GDP, RHO GTPase will bind to 
GTP and be activated [22]. Subsequently, the bound GTP 
replaces the GEF and the conformation of RHO GTPase 
changes again. This process enables RHO GTPases to 
interact with their specific effectors, thereby facilitating 
downstream signal transduction.

According to their structure, GEFs are classified into 
two families, the dedicator of cytokinesis (DOCK) 
homology region domain family and the DBL-homology 
(DH) domain family [23]. The majority of RHO GEFs 
belong to the DBL family, while the DOCK family func-
tions as GEFs for CDC42 and/or RAC, but not RHOA 
[24]. In addition, it is believed that the action of GEFs is 
specific not only to their substrates, i.e. RHO GTPases, 
but also to the cell types and upstream signals [25]. 
For example, GEFs act immediately upstream of RHO 
GTPases, providing a direct link between the activation 
of RHO and various cell surface receptors for growth 
factors, adhesion molecules, cytokines, and G protein-
coupled receptors [23].In addition, RHO GEFs play an 
essential scaffolding function and coordinate down-
stream signaling in response to upstream cell stimuli 

by interacting with a definite set of targets and bring-
ing these effector proteins into the vicinity of the RHO 
GTPases which they activate [24].

There are four times as many RHO GEFs as RHO 
GTPases, allowing a more rigorous spatiotemporal con-
trol of various activities. Several GEFs have high specific-
ity for a single GTPase (such as FGD1, which activates 
CDC42), while others may not be as specific (such as 
α-PIX, which activates both CDC42 and RAC) [23]. 
However, it remains challenging to predict the substrate 
specificity of most GEFs.

GAPs
Members of the RHOGAP family possess a conserved 
150-residue RHOGAP domain, which mediates the 
binding to the GTP-bound form of RHO proteins and 
accelerates their intrinsic GTP hydrolysis activity [26], 
thereby converting RHO GTPases to their inactive, 
GDP-bound form. GAPs therefore act as an inhibitor of 
RHO GTPases, and are often considered signal termina-
tors. There are 66 members of the RHOGAP family in 
humans, which far outnumbers the RHO GTPases, indi-
cating that several RHOGAPs can impart specific func-
tions to individual RHO GTPase [17]. It is necessary to 
tightly control the activity of each RHOGAP to ensure an 
appropriate balance between the GDP- and GTP-bound 
states of RHO proteins [14]. In addition to activating 

Fig. 3 The classical RHO GTPase cycle. RHOGEFs bind to the GDP‑bound form RHO GTPase and induce the exchange of GDP for GTP to activate 
RHO. Subsequently, the conformation of RHO GTPases changes, which allows them to interact with their specific effectors and triggers biological 
effects such as cell migration, polarity and adhesion. RHOGAPs bind to the GTP‑bound form of RHO GTPases to promote their intrinsic GTP 
hydrolysis activity, thereby acting as an inhibitor of RHO GTPases. RHOGDIs can extract geranylgeranylated RHO GTPases from the membrane and 
inhibit nucleotide exchange and hydrolysis to restrict GDP/GTP cycling. RHOGDIs maintain inactive pools of RHO GTPases in the cytosol and protect 
the prenyl group of the RHO GTPase in the hydrophobic pocket, preventing RHO GTPases from inappropriate activation, misfolding, or degradation
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GTP hydrolysis, GAPs may act as RHO GTPase effectors 
to mediate other downstream target functions [11].

GDIs
In mammals, there are three RHOGDI proteins, which 
bind to distinct RHO GTPases [14]. Among them, 
RHOGDI1 is the best-characterized and most abun-
dant. It is extensively expressed and interacts with vari-
ous RHO GTPases, including RHOA, RHOC, CDC42, 
RAC1, and RAC2 [27]. RHOGDI3 is usually expressed at 
low levels and is likely to interact with RHOB and RHOG 
[28]. RHOGDIs consist of a C-terminal domain, includ-
ing a geranylgeranyl-binding pocket that is indispen-
sable for extracting geranylgeranylated RHO GTPases 
from the membrane, as well as an N-terminal domain 
which interacts with the switch I and switch II domains 
of RHO GTPases, inhibiting exchange and hydrolysis 
to restrict GDP/GTP cycling [27, 29]. Thus, RHOGDI 
can form an inactive complex with RHO GTPases, and 
thereby sequester them to maintain inactive pools of 
RHO GTPases in the cytosol [14]. This complex also 
allows inactive RHO GTPases to quickly be translocated 
to any membrane in the cell to rapidly respond to spe-
cific signals [27]. In addition, they can serve as a chap-
erone to carry RHO GTPases between membranes, 
protecting the prenyl group of the RHO GTPase in 
the hydrophobic pocket. RHOGDI may therefore also 
contribute to the activation of RHO GTPases. Taken 
together, RHOGDIs prevent the inappropriate activation 
of RHO GTPases from and protect them from misfold-
ing and degradation [30]. The classical model of the RHO 
GTPase cycle  assumes that GDIs only extract with a 
GTPase when it has been inactivated by GAP [27]. How-
ever, recent studies indicate that RHOGDIs can not only 
promote the passive shuttling of inactive RHO GTPases 
(GDP-bound) in the cytoplasm, but also extract active 
RHO GTPases (GTP-bound) form membranes [31], 
which indicates that RHOGDIs effectively contribute to 
the spatiotemporal control of RHO GTPases.

Another aspect of the complex RHO regulation is the 
fact that GEFs and GAPs are multidomain proteins sub-
ject to complex regulation, which is modulated by post-
translational modifications, protein interactions, and 
binding of second messengers, which in turn regulate 
their localization, specificity, and activity [22]. In addition 
to regulation by GEFs, GAPs and GDIs, RHO GTPases 
are also controlled by post-translational modifications, 
including lipid modifications, ubiquitination, phospho-
rylation, and SUMOylation, which can significantly affect 
their function [16], especially in atypical RHO GTPases. 
Likewise, the expression of RHO GTPases can be regu-
lated at the transcriptional or post-transcriptional level. 
For example, micro-RNAs (miRNAs) can regulate the 

posttranscriptional processing of RHO GTPase-encoding 
mRNAs [32]. These factors create a complex network of 
interactions that determine the precise spatiotemporal 
activation of RHO GTPases, and thereby determine their 
final effects on the cell.

Cellular functions of RHO GTPases
Under stimulation by diverse upstream signals, RHO 
GTPases play various roles in cell motility, cell cycle, 
phagocytosis, membrane trafficking and other aspects 
(Fig. 4).

Cell motility
Cell motility is a multistep process (Fig.  5), including 
(1). Protrusion of the leading edge, (2). Local formation 
of new adhesions, (3). Cell body contraction, and (4). 
Detachment of the trailing edge [33].

The initial step of cell migration is the extension of 
cytoplasm, which is induced by actin polymerization at 
the leading edge and determines the movement direc-
tion. Membrane protrusion involves new actin polym-
erization and requires actin nucleators, such as Ena/
VASP protein and the actin-related protein-2/3 (Arp2/3) 
complex. The structure of membrane protrusions can 
be divided into finger-like structures called filopodia 
and sheet-like structures named lamellipodia, which 
are respectively induced by CDC42 and RAC1. CDC42 
is activated in response to various external stimuli such 
as chemo-attractants, integrins, or receptors for solu-
ble ligands. By releasing intramolecular interactions, 
CDC42-GTP can relieve the autoinhibitory mechanism 
of Wiskott–Aldrich syndrome protein (WASP) and Neu-
ronal-Wiskott–Aldrich syndrome protein (N-WASP) to 
activate them. When activating these effectors, CDC42 
contributes to the indirect activation of the Arp2/3 com-
plex [34] to initiate peripheral actin polymerization [6], 
leading to filopodia formation. CDC42 can also induce 
cytoskeletal polarization through the polarity protein 
partitioning defective-6 (PAR6) pathway with PAR3 
and/or isoforms of atypical protein kinase C (aPKC) 
[35]. Furthermore, CDC42 also plays important roles in 
cytoskeleton regulation and cell motility through many 
targets including the formin-family protein mammalian 
diaphanous (mDia), IRSp53 and myotonic dystrophy-
related CDC42-binding protein kinases (MRCK) α/β 
[19, 36–38]. RAC activates the WASP-family verprolin-
homologous protein (WAVE) complex, in turn which 
activates Arp2/3 to stimulate the formation of a “den-
dritic” actin network together with WAVE, contributing 
to lamellipodium extension [39, 40]. IRSp53 is another 
RAC target that contributes to this process by binding 
to RAC and WAVE [41]. However, RAC can also con-
trol the termination of Arp2/3 activation through Arpin 
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[42]. RAC possibly also activates mDia2, which nucle-
ates unbranched actin filaments [19]. By directly regulat-
ing the interaction between Lamellipodin (Lpd) and the 
WAVE complex, RAC activates Ena/VASP, which regu-
lates the length of actin filaments at the cell front by tem-
porarily safeguarding actin filament ends against capping 
protein while also recruiting polymerization-competent 
profilin-bound G-actin [43]. The binding of active RAC/
CDC42 disturbs the autoinhibitory conformation of PAK 
and then activates its catalytic domain through phospho-
rylation [36]. RAC/CDC42 phosphorylates LIM motif-
containing protein kinase (LIMK) to activate it via PAK1, 
which in turn efficiently induces the phosphorylation 
and inactivation of cofilin, leading to decreased depo-
lymerization of F-actin [44]. As mentioned above, many 
effectors of CDC42 are also downstream of RAC, and 
CDC42 is consequently considered a potential regulator 
that drives the activity of RAC-dependent lamellipodia 
[45]. Strikingly, RHOA was found to be activated at the 
leading edge to promote the polymerization of actin [45]. 

Consequently, the combined activity of RAC, CDC42 
and RHOA induces the formation of a protrusion at the 
leading edge to facilitate cell migration. Next, RAC and 
RHOA induce the formation of focal adhesions [46], in 
which actin-myosin fibers are connected to some discrete 
points on the inner plasma membrane, where dynamic 
protein complexes that are conducive to cell adhesion to 
the extracellular matrix (ECM) are localized [47].

Subsequent cell contraction is mainly mediated by 
stress fibers, a contractile device consisting of bundles 
of F-actin and myosin II [47]. The formation of stress 
fibers is mainly induced by RHOA/ROCK, which tar-
gets various cytoskeletal regulatory proteins. These 
proteins include the myosin light chain (MLC), MLC 
phosphatase, and LIMK [6]. ROCK phosphorylates 
and activates LIMK, which can further phosphorylate 
cofilin to inactivate it and inhibit its actin-depolymer-
ization activity, resulting in the stabilization of actin 
filaments [48]. In addition, ROCK promotes the phos-
phorylation of MLC by directly phosphorylating it or 

Fig. 4 RHO GTPase function. Under stimulation by various upstream signals, including integrin, GPCRs and tyrosine kinase receptors, RHO GEFs are 
activated. Subsequently, activated RHOA, RAC1 and CDC42 bind to and specifically activate their downstream effectors, including protein kinases 
(e.g., PKN, ROCK, and Citron) and scaffolding proteins (e.g., WASP, IRSp53 and mDia). These target proteins activate distinct signaling pathways with 
multiple roles in cell motility, cell cycle, phagocytosis and membrane trafficking
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inactivating myosin phosphatase, which finally causes 
myosin II activation and actomyosin-driven contractil-
ity [49]. mDia, another significant effector of RHOA, 
can cooperate with ROCK to assemble actomyosin 
bundles [50, 51]. Furthermore, ezrin/radixin/moesin 
(ERM), eukaryotic elongation factor 1-α1 (eEF1a1), and 
adducin are downstream effectors of ROCK that engage 
in actin cytoskeleton assembly [52]. Thus, RHOA not 
only strengthens actin polymerization, but also reduces 
its depolymerization to drive cell body contraction. 

Finally, RHOA/ROCK mediates tail retraction at the 
rear of the cell [46].

An epithelial-mesenchymal transition (EMT) is a 
biological process, which allows a polarized epithelial 
cell to assume a mesenchymal cell phenotype, playing 
important roles in embryo implantation, embryogen-
esis, organ development, tissue regeneration, organ 
fibrosis well as cancer progression and metastasis [53]. 
There are two migration fashions of invasive cells—
a mesenchymal or an amoeboid mode of migration 

Fig. 5 RHO GTPase‑driven cell migration modes. As a response to various signals, migrating cells enter the cell motility cycle. At the leading edge, 
RAC1 induces the formation of actin‑rich lamellipodia. CDC42 determines the formation of filopodia and the direction of motion. New protrusions 
adhere to the ECM through the formation of focal complexes, which are controlled mainly by RAC1 and RHOA. Then the cell body contracts 
depending on the formation of stress fibers and the contraction of actin‑myosin fibers, which is mediated by RHOA and ROCKs. Finally, the rear 
adhesions are dissolved, the cell tail retracts, and the cell moves forward
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[54], and the core of the former is RAC and the latter 
is RHOA. RAC1 is closely related to the mesenchymal 
migration mode of invasive cells and is characterized by 
the elongated morphology of cells and a leading edge 
with active membrane ruffles [54]. Furthermore, the 
activity of RAC1 is central to modulating the switch 
between amoeboid and mesenchymal migration fash-
ion. RAC1 activates WAVE2 to promote mesenchymal 
movement by actin assembly and to inhibit actomyo-
sin contractility and amoeboid movement by suppress-
ing ROCK activity [55]. In contrast, during amoeboid 
movement, ROCK inhibits RAC1 via stimulating Arh-
GAP22, a RAC GAP [55]. Amoeboid migration is char-
acterized by round cells which have weak adhesion with 
surrounding matrices [56]. Increased RHOA induces 
amoeboid motility via stimulating membrane blebbing 
through ROCK-dependent phosphorylation of myosin 
II and consequent actomyosin contractility [56]. This 
migration approach displays high levels of actomyosin 
contractility and can squeeze through the matrix via 
deforming the cell body, in a proteolysis-independent 
way [57]. Furthermore, RHOA/ROCK can also promote 
EMT by upregulating EMT-related genes via AP-1 [58].

Cell cycle
The cell cycle includes four phases, termed G1, S, G2, 
and M. In order to avoid abnormal proliferation or apop-
tosis caused by abnormal passage through the cell cycle, 
there are many checkpoints that can arrest the cell cycle 
through proteins such as cyclins and cyclin-dependent 
kinases [59]. RHOA/ROCK induces the phosphoryla-
tion of glycogen synthase kinase-3β (GSK-3β) and accu-
mulation of β-catenin, which contributes to increased 
expression of c-Myc and cyclin D1, leading to cell pro-
liferation and migration [60]. RHOA is also involved 
in the cell cycle by Citron to regulate cytokinesis [61]. 
RAC1 is important for cellular transformation through 
the regulation of antiapoptotic signals and cell cycle 
machinery. RAC1 promotes the progression of the G1 
phase by promoting the biosynthesis of cyclin D1 [62]. 
RAC1 can in turn also be activated by cyclin-dependent 
kinase 1 (CDK1) to promote mitosis through PAK [63]. 
In addition, RAC1 influences transformation by regulat-
ing nuclear factor-κB (NF-kB) [64]. By activating NF-κB 
in the nucleus, RAC1 leads to an inflammatory response 
that induces the nuclear translocation of nuclear fac-
tor erythroid 2-related factor 2 (NRF2) and increases its 
activity, which can block RAC1-dependent NF-κB activa-
tion through the NRF2/ARE pathway [65]. Thus, RAC1 
has a unique nuclear function. In addition, RAC1 was 
also reported to control cell proliferation and transcrip-
tion through p70 ribosomal S6 kinase (p70S6k) [66, 67].

Phagocytosis and membrane trafficking
Phagocytosis plays multiple roles in the organism, includ-
ing tissue homeostasis, remodeling, and immune defense. 
RHO GTPases, especially RAC1, are involved in phago-
cytosis. RAC1/2 modulate Arp2/3 recruitment and actin 
polymerization at the phagosome to regulate phago-
cytosis mediated by integrins and Fc-gamma receptors 
(FcγRs) [68]. In phagocytic cells, RAC1 was found to 
regulate the activity of NADPH oxidase through p67 to 
promote phagocytosis [69]. Recent studies demonstrated 
that RAC1 and RHOA can induce phagocytosis of apop-
totic bodies in hepatic stellate cells (HSCs) [70]. Moreo-
ver, RHO GTPases participate in membrane trafficking. 
RHOA is involved in endosomal trafficking by protein 
kinase N (PKN) [71]. Furthermore, CDC42/RAC1 is also 
involved in microtubule dynamics by inhibiting micro-
tubule plus end disassembly through phosphorylation of 
Op18/stathmin to inactive it via PAK [6].

Other functions
RHO GTPases also have many other features. For 
instance, RHOU activates PAK1 and JNK1 to induce 
filopodia and regulate intercellular tight junctions [72]. 
RND proteins have been demonstrated to modulate the 
organization of the actin cytoskeleton in some tissues, 
participate in neurite extension, and regulate contractil-
ity of smooth muscles [21]. RHO GTPases play essential 
roles in the nervous system, for example, RHOA inhibits 
axon outgrowth by mediating the effects of myelin-asso-
ciated axon growth inhibitors such as myelin-associated 
glycoprotein (MAG) through ROCK [73]. There are also 
findings implicating RHO GTPases in the regulation of 
metabolism. RAC1, which enhances the translocation of 
glucose transporter 4 (GLUT4) through a RalA-depend-
ent downstream pathway, was shown to have the ability 
to regulate glucose uptake [74].

However, there are still many issues in the research 
of RHO GTPases, especially concerning atypical RHO 
GTPases such as RHOBTB, RND, RHOH, RHOV and 
RHOU. Further questions remain surrounding their 
regulatory mechanisms, the nature of their downstream 
signals, and also their functions in the cell and whole 
organism.

RHO GTPase family in HCC
Hepatocellular carcinoma (HCC) is the fifth most com-
mon cancer in the world, as well as the third leading 
cause of cancer-related deaths [75, 76]. Moreover, the 
annual incidence of HCC is expected to surpass 1 mil-
lion by 2025 [77]. HCC commonly occurs in the context 
of chronic liver disease due to risk factors such as hepati-
tis B or C, alcohol abuse or nonalcoholic hepatic steatosis 
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and diabetes [78]. While novel diagnostic approaches and 
therapeutic strategies have led to substantial improve-
ment, the long-term prognosis of patients with HCC 
remains unsatisfactory, with median 5  year survival of 
18% [78], and metastasis as the main potential reason 
for high mortality [79]. Moreover, the median survival 
of patients with advanced HCC is only 6–8 months, and 
the main molecularly targeted drug, sorafenib, can only 
extend the median overall survival to 10.7–14.7 months 
[80, 81].

Strictly controlled cell migration is indispensable 
for the development of multicellular organisms, and 
its deregulation is a hallmark of metastatic cancer [82]. 
Recent studies have shown frequent dysregulation of 
RHO GTPases in a variety of human cancers, which is 
mainly caused by the dysregulation of their upstream 
regulators, GEFs, GAPs and GDIs. RHO GTPases have 
a well-recognized role in the acquisition of malignant 

features by cancer cells, and contribute to the modula-
tion of aggressive biological behaviors of tumor cells by 
affecting the cytoskeleton [12]. Given that RHO GTPases 
participate in various cellular functions, there is no doubt 
that they are connected with almost every stage of cancer 
development and progression, such as the dysregulation 
of cell proliferation, angiogenesis, resistance to apoptosis, 
tissue invasion, and metastasis [14]. Therefore, exploring 
the roles of the RHO GTPase family in HCC initiation 
and progression may contribute to finding a cure for this 
aggressive malignancy (Fig. 6).

RHO GTPases in HCC cell migration and invasion
The ability of cancer cells to spread to other parts of the 
body via metastasis is an important feature of cancer and 
a key factor determining the prognosis [83]. It is well 
known that RHO GTPases modulate cell motility and 

Fig. 6 RHO GTPase in HCC.RHO GTPases promote HCC progression via various approaches and play an essential role in HCC A migration and 
invasion, B proliferation, C tumor microenvironment and D apoptosis
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hence play an essential role in the migration, invasion, 
and metastasis of cancer cells [36, 84].

Many studies show that upregulation of RHOA expres-
sion promotes migration and invasion of HCC cells. For 
example, RHOA/ROCK can be activated by hypoxia-
induced upregulation of supervillin to activate the extra-
cellular regulated protein kinase (ERK)/p38 pathway, 
leading to the promotion of HCC cell migration and 
invasion [85]. Recent studies found that RHOA is fre-
quently overexpressed in HCC, which is strongly corre-
lated with satellite lesions, venous invasion and advanced 
TNM stage [86, 87]. Additionally, RHOA/ROCK2 was 
reported to promote the ubiquitination and degrada-
tion of dual-specificity phosphatase-1 (DUSP1/MKP1) to 
downregulate the protein expression of MKP1, resulting 
in the promotion of HCC invasion [88]. RHOA can also 
block the ubiquitination and degradation of MMP2 via 
ROCK2 to facilitate invasion of HCC [89]. Another study 
demonstrated that RHOA promotes HCC cell migra-
tion and invasion by activating ROCK1/MLC signaling, 
and facilitates HCC metastasis by enhancing the activity 
of the FAK/SRC pathway [90]. Moreover, RHOA activity 
can also be inhibited by Snail to recruit SRC-phosphoryl-
ated p190 RHOGAP, thereby promoting collective migra-
tion and the formation of circulating tumor cell clusters 
[91]. When activated by transcription factor HOXD10, 
RHOC promotes HCC metastasis via the urokinase-type 
plasminogen activator receptor (uPAR)/MMP pathway 
[92]. Another study demonstrated that RHOA can be 
activated by matricellular protein SPON2-α4β1 integrin 
signaling, and inactivated by SPON2-α5β1 integrin sign-
aling or integrin α9 to control HCC cell migration [93, 
94].

In contrast to primary HCC cell lines, an elevated 
active RAC1 level was found in a metastatic HCC cell line 
[95]. RAC1-WAVE2 signaling can be activated by SRC, 
which inhibits RHOA-ROCK signaling at the same time, 
leading to mesenchymal-type movement of HCC cells 
[96]. Following activation by RAB23, RAC1 increases 
the expression of TGF-β, resulting in the promotion of 
EMT and migration of HCC cells [97]. The activity of 
RAC1 can be suppressed by integrin α9 to decrease the 
phosphorylation of FAK and SRC, thereby inhibiting 
the migration and invasion of HCC cells [94]. In addi-
tion, elevated expression of RAC1B, a RAC splice vari-
ant with more repaid GDP/GTP exchange, was found in 
many cancers[98–100], including liver cancer [101]. The 
expression of RAC1B can be enhanced by ARHGAP11A 
to promote invasion, migration and EMT of HCC cells 
by decreasing N-cadherin and Snail expression while 
increasing E-cadherin expression [101].

However, CDC42 has contradictory effects in HCC. 
Although CDC42 was found to be upregulated in a 

variety of tumors [16], the loss of CDC42 in the liver 
leads to tumorigenesis and progressive development of 
HCC [102], suggesting a potential tumor suppressor role 
of CDC42 [102]. Strikingly, CDC42 was found to enhance 
the ability of HCC cells to invade surrounding tissues 
by inducing filopodia formation [103]. The expression 
of CDC42 in HCC can be increased by decreasing the 
expression of epithelial growth factor receptor (EGFR) 
to induce Myosin II activation, thus promoting HCC 
migration and invasion [104]. The transcriptional activity 
of the CDC42 promoter can be increased by RAB5a to 
upregulate CDC42 expression and thereby facilitate HCC 
progression [105]. Conversely, miR-185 was found to 
suppress this process by directly downregulating CDC42 
expression [106]. In addition, RAC1 and CDC42 are cor-
related with cancer metastasis, upregulating the PI3K 
signaling pathway to promote the migration and inva-
sion of various types of cancer, including HCC [107]. Fur-
thermore, RAC1/CDC42 induces the phosphorylation of 
Ser215 of p53 by PAK4, further eliminating the inhibi-
tory effect of p53 on the invasion and migration of HCC 
cells [108]. RAC1/CDC42 also promotes HCC EMT and 
metastasis via PAK1 [109, 110], which induces cancer 
metastasis via the phosphorylation of paxillin and activa-
tion of JNK [111].

Several other atypical RHO GTPases also play impor-
tant roles in HCC metastasis, such as RHOF, which 
interacts with AMP-activated protein kinase (AMPK) 
and enhances its phosphorylation. This in turn increases 
RAB3d expression, amplifying the Warburg effect to pro-
mote the migration and invasion of HCC cells [112]. It 
was also reported that RND1 is downregulated in HCC, 
enhancing the activity of RHOA and leading to EMT-
mediated migration and metastasis of HCC cells via the 
RAF/MEK/ERK signaling pathway [113].

Consequently, RHO GTPases are considered a key 
factor in regulating the migration, invasion, EMT and 
metastasis of HCC cells.

RHO GTPase family in HCC cell proliferation
In the early stages of HCC development, uncontrolled 
cell proliferation is critical, and RHO GTPase family is 
involved in the dysregulation of proliferation. For exam-
ple, RHOA activates the ERM pathway and EMT via 
ROCK1 to facilitate HCC cell proliferation [114]. Fur-
thermore, RHOA/ Rhotekin (RTKN) promotes HCC cell 
proliferation by activating NF-κB signaling [115]. RHOA 
can also promote HCC cell proliferation and cell cycle 
progression by upregulating cell cycle-associated pro-
teins, CDK1 levels and proliferating cell nuclear antigen 
through RTKN2 [116]. Another study demonstrated that 
RHOA can also be activated by epithelial cell transform-
ing sequence 2 (ECT2) to facilitate the proliferation of 
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HCC cells via the RHOA/F-actin/Hippo-YAP signal-
ing axis [117]. Similarly, RHOA/actin promotes HCC 
cell proliferation via the transcriptional regulator serum 
response factor (SRF) [118]. Other studies showed that 
RHOA facilitate HCC cell proliferation not only via 
ROCK2 [119], but also ERK [120]. Of note, RHOC can 
promote cell cycle progression by upregulating cyclin D1 
and CDK4 as well as downregulating cyclin-dependent 
kinase inhibitors, p16 and p21, thus promoting HCC cell 
proliferation [121]. RAC1 can also be activated by RAB23 
to increase the expression of TGF-β or activate PI3K/
AKT signaling, leading to the growth and proliferation 
of HCC cells [97, 122]. Conversely, RAC1 can be inhib-
ited by miR-365 and miR-194, leading to the suppression 
of HCC dedifferentiation and cancer stem cell prolifera-
tion [123, 124]. In addition, RAC and CDC42 are able 
to inhibit cell cycle arrest in HCC via PAK5 and thereby 
facilitate tumor growth cells [125]. Strikingly, RHOE ena-
bles HCC cell to bypass senescence and promotes their 
proliferation [126].

Thus, the crucial roles of RHO GTPases in cell pro-
liferation are becoming increasingly clear, providing a 
theoretical basis for a deeper understanding of HCC 
pathogenesis.

RHO GTPases in HCC microenvironment
RHO GTPase family has important regulatory roles in 
inflammation and angiogenesis in the tumor microenvi-
ronment of HCC. Tumor capillary endothelial cells (ECs) 
show abnormally high levels of RHOA, resulting in aber-
rant mechanosensing and excessive angiogenesis [127]. 
RHOA/ROCK can also remodel the ECM in the tumor 
microenvironment to facilitate HCC cell invasion [128, 
129]. RHOC/ROCK2 promotes vasculogenic mimicry 
(VM) in HCC through ERK/MMPs, which significantly 
improves the tumor blood supply [130]. Furthermore, 
knockdown of RHOC in HCC cells reduced VEGF 
expression as well as the migration and organization of 
ECs to decrease HCC-induced angiogenesis [131]. In 
addition, RHOB was also found to promote angiogenesis 
by enhancing VEGFA-VEGFR2 signaling to contribute 
to HCC malignancy [132]. The degradation of RHOB is 
blocked by TNFAIP1 downregulation, thereby activating 
the p38/JNK MAPK pathway to induce the expression 
of IL-6 and IL-8 in TNF-α-stimulated HCC cells [133]. 
These pro-inflammatory cytokines can modulate the 
tumor inflammatory microenvironment to facilitate can-
cer development and progression.

Conversely, the expression and activity of RHO 
GTPases can also be modulated by the tumor micro-
environment. For instance, a recent study found that 
the expression of RHOA/ROCK and RAC1/PAK can 
be increased by hypoxia, inducing VM through the 

stabilization of HIF-1α and p-Vimentin-activated EMT, 
which ultimately promotes the invasion and metastasis of 
HCC [134].

RHO GTPase in hcc cell apoptosis
Escape from apoptosis is a hallmark of cancer [135], and 
the RHO GTPase family is also involved in the process of 
apoptosis. For example, RHOA inhibits HCC cell apop-
tosis via RTKN [116], which can activate NF-κB signal-
ing [115]. Moreover, RHOA can also block apoptosis of 
HCC cells through ROCK2 [119, 136]. RHOA also inhib-
its HCC cell apoptosis when activated by ECT2 [137]. 
Similar to RHOA, RHOC plays an antiapoptotic role in 
HCC by upregulating the antiapoptotic gene BCL2 [138], 
and downregulating the proapoptotic gene BAX [121]. 
Another study unambiguously showed that CDC42/
RAC1 mediates cisplatin resistance by inhibiting cell 
cycle arrest and apoptosis in HCC cells through PAK5 
[125]. However, the exact mechanism requires further 
studies.

Treatment strategies
While novel diagnostic approaches and therapeutic strat-
egies have substantially improved, the cure rates and 
long-term survival of patients with HCC remain unsat-
isfactory [76]. Hence, there is an urgent need to explore 
the molecular mechanisms underlying tumorigenesis, 
metastasis and chemoresistance in HCC to identify new 
therapeutic targets.

As mentioned above, the dysregulation of RHO 
GTPases is involved in the various aspects of malignancy, 
which makes RHO GTPase family an appealing target 
for cancer therapy [12, 13]. However, because of the sub-
nanomolar binding affinity of RHO GTPases for their 
substrates GDP or GTP, as well as the high concentra-
tion of GTP in the cells [139], and the lack of any suit-
able binding sites in RHO GTPases, they are generally 
presumed to be undruggable clinical targets. Therefore, 
drug development for targeting RHO family proteins is 
limited. So far, the major pharmacological interventions 
targeting RHO GTPases are the lipid modification on 
their carboxy-terminal region, the interface of RHO with 
RHOGEF [139], and downstream effectors [13] (Fig.  7, 
Table. 1). Nevertheless, because of many problems such 
as high toxicity, low selectivity and insufficient efficacy 
of existing inhibitors, there are no clinically efficacious 
drugs targeting RHO GTPases for cancer treatment 
available [140].

Inhibitors targeting the RHO GTPase
There are two approaches to inhibiting RHO GTPase: 
inhibiting RHO-nucleotide interactions or regulat-
ing the localization of RHO. For instance, EHT 1864, 
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a nucleotide-binding inhibitor of RAC, which sup-
presses both guanine nucleotide association and Rac1-
Tiam1 complex formation, keeping Rac in an inactive 
state [141]. R-ketorolac, a specific inhibitor of RAC and 
CDC42, can inhibit cancer cell migration and invasion 
in  vivo [142]. Otherwise, the specific CDC42 inhibitor 
ML141 (CID2950007) and its analog CID44216842 can 

inhibit GTP binding to CDC42 to block CDC42-driven 
cancer cell migration [143]. Because of the absence of 
stable binding pockets on the surface of RHOA, the gen-
eration of RHOA-specific inhibitors presents several 
challenges [144]. Furthermore, membrane association is 
a prerequisite of RHO GTPase activation, whereas their 
ability to anchor at the membranes depends on the pres-
ence of the prenyl group. Splice variants of SmgGDS 
are major regulators of the prenylation of RHO family 
members [145]. However, statins can increase SmgGDS 
expression via targeting HMG CoA reductase pathway 
and thus diminishing lipid modifications needed by Rho 
GTPases to suppress their activation [146, 147].

Inhibitors targeting the interaction of RHO and their 
effectors
A more common strategy to suppress the role of RHO 
GTPases in facilitating malignancy is targeting its down-
stream effector proteins. Most kinase inhibitors target 
the kinase ATP binding site in the active state of kinase, 
reversibly competing with ATP [148]. As mentioned 
above, the RHOA effector ROCK plays a promoting 
role in various stages of cancer. Even though consider-
able efforts have been made to develop ROCK inhibi-
tors, most are still at the preclinical evaluation stage. For 

Fig. 7 Targeting the RHO GTPase signaling. There are many 
approaches to target RHO GTPase signaling, including disrupting the 
interactions between RHO and GEF, inhibiting RHO proteins directly 
and inhibiting the effect of RHO effectors

Table 1 Inhibitors for RHO GTPases

Target Name of compound Mechanism Effect Ref.

RHO GTPases

 RAC EHT 1864 Lock in inactive state Blocks migration and invasion of cancer cell [141]

 RAC/CDC42 R‑ketorolac Targets RAC1 and CDC42 Blocks migration and invasion of cancer cell [142]

 CDC42 ML141 Block nucleotide binding Blocks migration and invasion of cancer cell [143]

 RHO/RAC/CDC42 statins Targeting HMG CoA reductase pathway to 
diminishing lipid modifications needed by 
Rho GTPases

Blocks proliferation and invasion of cancer 
cell

[146, 147]

Interaction of RHO and effectors

 ROCK ATS907 Compete with ATP In trial for glaucoma and ocular hypertension [148]

AR‑12286 Compete with ATP In trial for glaucoma and ocular hypertension [148]

Y‑27632 Compete with ATP Blocks proliferation, migration and invasion 
of cancer cell

[151]

fasudil Compete with ATP Blocks proliferation, migration and invasion 
of cancer cell

[152, 153]

 PAK MBQ‑167 Blocks PAK phosphorylation Blocks growth, migration and EMT of cancer 
cell

[155]

 MRCK BDP9066 Compete with ATP Blocks proliferation and invasion of cancer 
cell

[156]

Interaction of RHO and RHOGEF

 RAC NSC23766 Blocks interaction of RAC1 with TIAM1 and 
Trio

Blocks migration and invasion of cancer cell [157–159]

1D‑142 Block GEF binding Blocks growth and invasion of cancer cell [161]

 RAC/CDC42 EHop‑016 Derivative of NSC23766 Blocks migration and invasion of cancer cell [160]

 RHOA Rhosin Block GEF binding Blocks migration and invasion of cancer cell [162]

DC‑Rhoin Binds to the surface of RHOA by Cys107 Blocks migration and invasion of cancer cell [140]
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example, studies of ATS907 and AR-12286 for glaucoma 
were discontinued due to their adverse effects [148]. 
Y-27632 consistently suppresses RHOA-induced, ROCK-
mediated formation of focal adhesions and stress fibers 
[149, 150], and inhibits intrahepatic metastasis of human 
HCC [151]. In Japan and China, the ROCK inhibitor fas-
udil is approved for the acute clinical treatment of cer-
ebral vasospasm [152] and shows therapeutic potential in 
HCC [153]. However, its pharmacokinetic characteristics 
make it unsuitable for use in chemotherapy [154]. The 
high similarity of the homologous ATP-binding regions 
of ROCK and several other protein kinases, such as PKA 
and PKC, restricts the development of highly selective 
ROCK inhibitors [52, 148]. Taken together, ROCK inhibi-
tors may have significant potential for treating cancer and 
other diseases, with clinical trials for human cancers cur-
rently under way [148]. Furthermore, the RAC1/CDC42 
inhibitor MBQ-167 may be a promising anticancer drug 
that specifically suppresses downstream PAK signal-
ing and STAT3 activity to inhibit the growth, migration 
and EMT of cancer cells [155]. Another study found that 
BDP9066 is a selective small-molecule inhibitor of the 
Cdc42-binding MRCK kinases [156]. Although rationally 
designed small molecule inhibitors have shown promis-
ing preclinical results, there are no clinically effective 
drugs approved for cancer treatment, and there are also 
no related clinical trials at present.

Inhibitors targeting the interaction of RHO and RHOGEF
Another approach to design inhibitors of the RHO 
GTPase family is to target the interaction with their 
upstream regulators. NSC23766 can impair the inter-
action of RAC1 with TIAM1 and Trio GEFs, but can-
not disturb the activation of RHOA and CDC42 [157]. 
Therefore, this inhibitor can suppress the CAMSAP2-
dependent RAC1/JNK pathway, or the cysteine-rich 
domains-1-RAC1 pathway to inhibit the invasion and 
migration of human HCC [158, 159]. However, the 
potency of this compound is relatively low, limiting its 
further development as a clinical candidate. EHop-016 
is another RAC1 inhibitor that binds more tightly to the 
effector domain, moreover, it is a derivative of NSC23766 
but is 100 times more potent than NSC23766 [160]. How-
ever, EHop-016 is no longer specific to RAC1 at higher 
concentrations but also suppresses CDC42 activity with-
out influencing RHOA. The specific RAC1 inhibitor 
1D-142 can modulate the RAC1-related transcriptional 
programme in HCC via regulating the interaction of 
RAC and RACGEF to significantly inhibit tumor growth 
and intrahepatic metastasis [161].These inhibitors can be 
further developed as pharmacological inhibitors of RAC 
in metastatic cancer cells. Rhosin, the first developed 
RHOA-specific inhibitor, impedes the docking between 

RHOA and various GEFs to suppress cancer progression 
[162]. DC-Rhoin, a novel inhibitor of RHO GTPase, can 
covalently modify RHO protein at Cys107 to disrupt the 
interaction of RHO with GEF and GDI [140]. Because 
of the inactivation of RHO GTPase by RHOGAP [163], 
enhancing RHOGAP activity is a promising treatment 
strategy. However, several RHOGAPs overexpressed in 
HCC exert a negative effect on HCC progression, there-
fore confounding the development of RHOGAP activa-
tors as anticancer agents. Preventing the release of RHO 
GTPases from RHOGDIs may also be a potential inhibi-
tory strategy.

Although inhibitors of RHO GTPase family have not 
been used clinically for cancer treatment to date, rational 
targeting to the RHO GTPase family still carries sig-
nificant potential in the discovery of new anticancer 
drugs, particularly for future combinatorial therapies. 
We should further evaluate the benefits and risks of 
the inhibitors as well as develop inhibitors with higher 
potency and less toxicity.

Conclusions
There is accumulating evidence for the crucial roles of 
the RHO GTPase family in the development of HCC. 
RHO GTPases directly control the movement of cancer 
cell, promoting migration, invasion and metastasis, ulti-
mately leading to the EMT and a switch of cancer cell 
migration between mesenchymal and amoeboid modes. 
In addition, the RHO GTPase regulators GEFs, GAPs 
and GDIs are also usually dysregulated in HCC. There-
fore, this subfamily is considered a promising therapeutic 
target for HCC. However, the development of inhibitors 
for RHO GTPases is limited due to several issues such as 
their intrinsic structure, which lacks stable binding pock-
ets. We need to further clarify the regulatory mechanism 
of the RHO GTPase family to open up novel directions 
for the design of additional therapeutic interventions and 
pay more attention to the design of inhibitors targeting 
RHO effectors and regulators. Furthermore, the majority 
of studies on the roles of RHO GTPase and its regulators 
in cancer progression have been performed in  vitro. To 
understand whether they also contribute to the migration 
and invasion of cancer cells in vivo, future studies should 
establish pre-clinical in  vivo models. Finally, we mainly 
focus on RHOA, RAC1 and CDC42, with few studies 
investigating the other members. Therefore, further stud-
ies are needed to understand the roles of these less-char-
acterized RHO GTPases in the development of HCC.
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