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Abstract 

Chimeric antigen receptor (CAR)-engineered T (CAR-T) cells have obtained prominent achievement in the clinical 
immunotherapy of hematological malignant tumors, leading to a rapid development of cellular immunotherapy in 
cancer treatment. Scientists are also aware of the prospective advantages of CAR engineering in cellular immuno-
therapy. Due to various limitations such as the serious side effects of CAR-T therapy, researchers began to investigate 
other immune cells for CAR modification. Natural killer (NK) cells are critical innate immune cells with the character-
istic of non-specifically recognizing target cells and with the potential to become “off-the-shelf” products. In recent 
years, many preclinical studies on CAR-engineered NK (CAR-NK) cells have shown their remarkable efficacy in cancer 
therapy and their superiority over autologous CAR-T cells. In this review, we summarize the generation, mechanisms 
of anti-tumor activity and unique advantages of CAR-NK cells, and then analyze some challenges and recent clinical 
trials about CAR-NK cells therapy. We believe that CAR-NK therapy is a promising prospect for cancer immunotherapy 
in the future.
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Introduction
Cellular immunotherapy plays an indispensable role in 
cancer treatment. Chimeric antigen receptor (CAR)–
engineered T cells therapy, especially for the treatment of 
hematological malignant tumors, has become a research 
hotspot over the past decade. One BCMA-targeted 
and four CD19-targeted CAR-T products have been 
approved for marketing by the American Food and Drug 
Administration (FDA): tisagenlecleucel and axicabtagene 

ciloleucel for the treatment of relapsed/refractory (R/R) 
large B-cell lymphoma and pediatric B-cell acute lym-
phocytic leukemia, brexucabtagene autoleucel for R/R 
mantle cell lymphoma, lisocabtagene maraleucel for R/R 
large B-cell lymphoma, and idecabtagene vicleucel for 
R/R multiple myeloma [1–5]. However, CAR-T therapy 
still has many unavoidable limitations that hinder fur-
ther development in clinical treatment (Table 1): (1) The 
safety of CAR-T cells needs to be solved. Cytokine release 
syndrome (CRS) and immune effector cell-associated 
neurotoxicity syndrome (ICANS) are the major inevita-
ble toxicities that still lack corresponding effective man-
agement in most cases [6]. (2) CAR-T therapy requires 
T cells that can only be derived and engineered from the 
autologous peripheral blood and then injected back into 
the patient, so it is time-consuming and expensive for 
patients. (3) T cells are the main effector cells of graft-ver-
sus-host disease (GVHD), so CAR-T therapies have the 
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risk of developing GVHD, which requires higher safety 
of CAR-T products [7]. (4) Other limitations include the 
off-targeted toxicity and the ineffective treatment of solid 
tumors due to the immunosuppressive microenviron-
ment [8–11]. Given the shortcomings of CAR-T therapy, 
researchers began to apply the principles of CAR-engi-
neered therapy to other immune cells [12, 13]. Because of 
the unique biological characteristics, anti-tumor mecha-
nisms, wide range of sources, and higher safety of natu-
ral killer (NK) cells, CAR-engineered NK (CAR-NK) cells 
which are regarded as a promising alternative platform 
have attracted considerable attention in recent years [13–
17]. In this review, we will discuss CAR-NK cells in detail, 
including the generation, tumor-killing mechanisms and 
promising advantages of CAR-NK cells, and then analyze 
some challenges and recent clinical trials about CAR-NK 
cells therapy.

Generation of CAR‑NK cells
The success of CAR-T therapy in clinical trials has led to 
the development of CAR-NK cells. Genetic engineering 
of NK cells with a CAR structure is also similar with the 
generation of CAR-T cells. The procedure for adoptive 
CAR-NK therapy in cancer patients is described in the 
Fig. 1.

CAR structures
At present, most preclinical studies on CAR-NK cells still 
follow the CAR structures adopted by CAR-T therapies. 
The CAR construct is similar to that of the T cell recep-
tor. It consists of several parts including an extracellular 
antigen binding region, an extracellular hinge domain 
and a transmembrane region, and an intracellular signal 

transduction region that transmits activation signals and 
costimulatory signals to T cells. The extracellular anti-
gen binding region is a single-chain variable fragment 
(scFv), which is constructed by connecting the heavy 
chain variable region and the light chain variable region 
of the monoclonal antibody via a short linker peptide 
[18–20]. The CAR structure has undergone at least five 
generations of evolution. The first-generation structure 
that only provides the first activation signal for T cells 
cannot effectively activate T cells and provide a continu-
ous anti-tumor effect in vivo [21, 22]. In the second- or 
third-generation structures, one or two costimulatory 
signal molecules are added to provide the second activa-
tion signal. CD28 and 4-1BB (CD137) are two commonly 
used classical costimulatory domains [23], and others 
such as CD27, OX40 (CD134), ICOS (CD278), CD40, 
toll-like receptors, and complement 3a receptor (C3aR) 
have also been studied [24–28]. In the fourth generation, 
some structures such as suicide genes and cytokines are 
integrated to regulate T cells precisely, which is worth-
while exploring to reshape the tumor microenvironment 
(TME) [29–31]. In the new generation of CAR-T cells, 
endogenous T cell receptors and leukocyte antigen class I 
(HLA) are knocked out and fusion proteins are integrated 
for reducing the toxic side effects and re-establishing the 
immune system after infusion [20].

Previous studies of CAR-NK cells used the first four 
generations of CAR constructs designed for T cells, such 
as 4-1BB, CD28 costimulatory domains, and CD3ζ sign-
aling domains. However, recent studies have shown that 
the domains specific to NK cells can produce stronger 
activation of NK cells and anti-tumor response [32]. 
Ye Li and his team demonstrated that CAR constructs 

Table 1 Comparison of the advantages and disadvantages of CAR-T therapy and CAR-NK therapy

CAR-T therapy CAR-NK therapy

Advantage Better expansion and persistence
Easier transduction and modification
Proven prospects for clinical use (many positive clinical results have been reported; CAR-T clinical 
products approved by FDA)

Various allogeneic sources 
(PB, UCB, NK cell lines, iPSC)
Good safety, no GVHD, CRS 
and ICANS
CAR-dependent killing 
mechanism and innate 
cytotoxicity (including 
ADCC)
“Off-the-shelf” products 
availability and lower cost

Disadvantage Single source (patient’s autologous T cells)
Risk of GVHDs and side effects (CRS, ICANS)
Only CAR-dependent killing mechanism
Higher cost and low production efficiency (needs to be prepared individually for each patient)
Low potential of “off-the-shelf” products

Difficulty in large-scale 
expansion and short 
lifespan
More difficult to transduce 
and modify
More encouraging clinical 
results are still needed 
to prove its application 
prospects
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specifically designed to enhance NK cell activity have 
a potent ability to kill tumors both in  vitro and in  vivo. 
They finally concluded that CAR-NK cells with scFv 
(anti-mesothelin)-NKG2D-2B4-CD3ζ (NK-CAR4 struc-
ture) have stronger cytotoxicity, expansibility and persis-
tence than scFv-CD28-CD137-CD3ζ (T-CAR structure) 
[33]. CD3ζ and DNAX-activation proteins (DAP10 
and DAP12) are signaling adaptor molecules that con-
tain immunoreceptor tyrosine-based activation motifs 
(ITAMs). They can initialize the activation of NK cells 
through phosphorylation mediated by protein tyros-
ine kinases of the Src family and then up-regulate the 
phosphorylation of signaling pathways such as the Syk-
vav1-Erk and NF-kB pathways, resulting in cytotoxic-
ity (release of cytotoxic granules, including perforin and 
granzymes) and cytokines production (e.g., TNF-α and 
IFN-γ) [34–36]. As an important activation receptor, 

NKG2D is a C-type lectin-like family molecule expressed 
on the surface of almost all NK cells [37]. DAP10 is a 
downstream signal molecule that transmits signals for 
the activating receptor NKG2D. The two can combine 
specifically via the induced fit theory and further induce 
phosphorylation [38, 39]. Similarly, DAP12 transmits 
activation signals for activating receptors such as NKG2C 
and NKp44. The DAP12 domain that contains only one 
ITAM can provide sufficient and better activation sign-
aling to NK cells compared with a CAR containing the 
CD3ζ chain with three ITAMs [40]. Another activat-
ing receptor, 2B4, belongs to the signaling lymphocytic 
activation molecule family and contains an immunore-
ceptor tyrosine-based switch motif that mediates signal 
transduction associated with the activation of NK cells. 
And 2B4 was demonstrated to enhance cytokine secre-
tion after linking with NKG2D [41]. The evolution of the 

Fig. 1 Generation of CAR-NK cells for adoptive transfer immunotherapy in cancer patients. A. Evolution of CAR structures from the first generation 
to the fourth generation according to NK cell intracellular motifs and functions. The new NK-CAR structure contains NKG2D ectodomain with 
CD3ζ, DAP10 or DAP12 cytoplasmic signal domain. B. The mechanisms of tumor destruction by CAR-NK cells through both CAR-dependent and 
CAR-independent manners. C. Different cell sources and corresponding procedures for manufacturing CAR-NK cell products
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CAR structures and the specific NK-CAR were displayed 
in the Fig. 1A.

CAR vector transfer in NK cells
NK cells are more difficult to be successfully engineered 
with CAR structures compared with T cells, as a result 
of different sensitivity to the interference of foreign 
introduced genes [42]. Thus, it leads to lower transduc-
tion efficiency than CAR engineered to T cells due to the 
resistance of inserting foreign genes mediated by their 
natural defense receptors [43]. Approaches for CAR gene 
transferred into NK cells can be divided into viral and 
non-viral ways (Fig. 2). And currently, there is no avail-
able gene transfer method that is universally applicable 
because every method more or less has flaws.

Viral transductions including the retroviral and lentivi-
ral-based vectors enable foreign genes to insert into the 
targeted cell genome and stably express for a long time. 
Viral vectors can accommodate complicated and long 
sequences up to 10kbp, and transfer them into the host 

integrally [44]. It is also the main method used in a large 
number of CAR-NK preclinical studies. However, there 
are likewise some drawbacks of viral transduction. Ret-
roviral vectors are likely to cause insertion mutation and 
toxic damage to primary NK cells, and can only intro-
duce foreign genes when the host cells are in the stage 
of proliferation with their nuclear membrane dissolving 
[45]. Before transduction, NK cells need to be stimu-
lated into an expanded state with some cytokines (e.g., 
IL-2, IL-21, IL-15, IL-12, IL-18) [46, 47]. In contrast to 
retroviral vectors, lentiviral vectors can integrate their 
genetic materials into resting cells but with lower effi-
ciency. Multiple rounds of transfection are often needed 
to achieve the transduction efficiency required [48, 49]. 
In order to improve the efficiency, it is often necessary 
to add auxiliary transfection reagents, such as polybrene, 
RetroNectin, or Vectofusin-1[50–52]. Müller and his 
coworkers compared two different vectors, lentiviral and 
alpharetroviral, both combined with two different trans-
duction enhancers (RetroNectin and Vectofusin-1). They 

Fig. 2 Various approaches of delivering CAR into NK cells. The methods for genetic engineering of NK cells including viral transduction (upper) and 
non-viral electroporation (lower), as well as their strengths and drawbacks are illustrated
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concluded that using RD114-TR pseudotyped retroviral 
particles in combination with Vectofusin-1 is a promising 
strategy to genetically modify NK cells to achieve highly 
cytotoxic CD19-CAR-NK cells with high yield [53]. In 
addition, it can also optimize virus packaging by select-
ing the best pseudotyping envelope protein, such as using 
baboon envelop glycoprotein (BaEV-gp) instead of the 
commonly used vesicular stomatitis virus glycoprotein 
G (VSV-G). A research group reported that using BaEV 
pseudotyped lentiviral vectors can obtain a transduction 
rate of about 83.4% in activated NK-cells, which outper-
formed VSV-G-, RD114- and measles virus-pseudotyped 
lentivirus [54]. Another group found that spinfection 
transduction (centrifugation at a low speed) showed bet-
ter efficiency (19–73%) with CD19-CAR lentiviral trans-
duced to NK cells from cord blood compared with static 
transduction (12–30%) [55]. Thus, spinfection may be 
another method to further optimize viral transduction. 
Recently, recombinant adeno-associated virus (AAV) has 
been broadly adopted and been regarded as an alterna-
tive gene delivery tool, owing to their high efficiency of 
transduction and a better safety profile. The combination 
of CRISPR/Cas9 and AAV resulted in highly efficient and 
stable CD33-CAR expression applicable to cancer immu-
notherapy. But AAV also has limitations of constrained 
packaging capacity and vector production difficulty [56].

Another non-viral strategy of CAR-NK engineering is 
transfection with electroporation. Electroporation can 
transport mRNA or DNA into the cell by utilizing short 
electric pulses to make tiny holes of the cell membrane. 
But it may damage cells due to membrane leakage [57, 
58]. DNA electroporation needs higher transfection con-
ditions and leads to the lower efficiency and viability of 
cells than mRNA electroporation [59, 60], so it has not 
been used in clinical trials of CAR-NK cells. Compared 
with viral transduction, although the efficiency of mRNA 
electroporation is higher, the expression of the CAR gene 
cannot be maintained for a long time owing to transient 
transfection without integrating into the cell genome 
[61, 62]. And Boissel, L concluded that lentiviral vectors 
should be used for CAR transduction if primary NK cells 
are considered. Transfection with mRNA only is suit-
able for meeting clinical demand in NK-92 cells [55]. 
Lin Xiao et  al. reported that utilizing optimized mRNA 
electroporation for NK cells expressing NKG2D-DAP12 
CAR structures provided almost 99% transfection effi-
ciency, which was maintained for about 5 days [63]. Some 
researchers combine electroporation with transposons 
or CRISPR/Cas9-based integration [64–66]. The sleeping 
beauty transposon system for integrating CAR vectors 
has been tried out in CAR-NK cells [33]. Recently, the 
new technology of CRISPR/Cas9 can accurately select 
the site of integration of the CAR gene and perform gene 

knockout in NK cells, which provides new possibilities 
for improving CAR-NK cell products [67]. Gurney et al. 
applied CRISPR/Cas9 genome editing to knock down the 
CD38 gene during NK expansion with a mean efficiency 
of 84% and then expressed an affinity optimized CD38-
CAR. They found that the cytotoxic potential of CD38 
KO-CD38 CAR-NK cells was augmented and proposed a 
viable immunotherapeutic approach for the treatment of 
acute myeloid leukemia (AML) [68].

Mechanisms of cancer killing
CAR-independent killing mechanism
The cytotoxicity of NK cells is controlled by a series of 
active and inhibitory receptors expressed on themselves. 
When encountering tumor cells or other stress condi-
tions, activating receptors on NK cells, such as NKG2D, 
NKp30, NKp44 and NKp46, can be stimulated to engage 
with ligands, thus triggering NK activation and mediat-
ing their killing activity [69, 70]. On the contrary, some 
inhibitory receptors such as killer immunoglobulin-like 
receptors (KIRs) can inhibit the activity of NK cells when 
they bind to corresponding ligands. For example, our 
healthy cells express human leukocyte antigen (HLA) 
ligands that bind to KIRs so that NK cells do not attack 
them under normal circumstances [71]. In addition, NK 
cells exert their non-targeted cytotoxicity in a non-major 
histocompatibility complex restricted manner. First, NK 
cells kill target cells through similar cytotoxic mecha-
nisms with  CD8+ cytotoxic T cells, including releasing 
perforin/granzyme, which leads to target cell lysis; upreg-
ulating Fas ligand or TRAIL receptor on their surface to 
induce tumor cell apoptosis; and releasing cytokines and 
chemokines to recruit and activate other immune effec-
tor cells such as macrophages and dendritic cells [72–74]. 
Moreover, CD16 (Fc receptor) expressed on NK cells rec-
ognizes the Fc segment of immunoglobulin G that binds 
to the target cells, thereby mediating the cytotoxicity of 
NK cells against tumors. It is the antibody-dependent 
cell-mediated cytotoxicity (ADCC) [75].

CAR-dependent killing mechanism
Although the cytotoxicity of NK cells is non-targeted, NK 
cells can reach the tumor site where specific antigens are 
expressed and kill tumors in targeted ways after geneti-
cally engineered with the CAR structure. Figure 1B dis-
played the two kinds of killing mechanisms of CAR-NK 
cells. Different specific targets of CAR can be selected 
according to the various tumor types. Table 2 and Table 3 
summarize some preclinical researches of the anti-target 
CAR-NK cell therapy for hematological malignancies 
and solid tumors, respectively. For the hematological 
malignant tumors such as lymphomas and leukemias, 
CD19 is the most commonly used target that is only 
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overexpressed on B-cell malignancies. BCMA, CD138 
and CS1 are the targets of multiple myeloma for CAR-
NK cells. Others such as CD7, CD123 and CD5 are also 
the anti-targets for engineered-NK cell therapy (Table 2). 
For solid tumors, anti-HER2 and anti-EGFR engineered-
NK therapy have been reported in several cancers like 
glioblastoma, breast, and ovarian cancers. Han reported 
that EGFR-CAR-engineered NK cells displayed enhanced 
cytolytic capability and production of IFN-γ, which 
restrained glioblastoma growth and obviously prolonged 
the survival of tumor-bearing mice [76]. Other anti-
gens including mesothelin, PSCA, GPA7 and EpCAM 
were explored as CAR-NK cell  targets in solid tumors 
(Table 3).

Advantages of CAR‑NK immunotherapy
Abundant sources of NK cells
Compared with CAR-T cells that can only be derived 
from autologous (patient-derived) peripheral blood, 
CAR-NK cells have more diverse sources to choose from. 
Different cell sources and corresponding procedures for 

manufacturing CAR-NK cell products were summarized 
in the Fig. 1C. Allogeneic NK cells provide a greater pos-
sibility of making “off-the-shelf” products [125], which 
can not only reduce the long period needed for CAR-T 
production, but also prevent patients with poor physical 
condition from being unable to receive CAR-engineered 
cellular immunotherapy. Because patients whose immu-
nity is already severely damaged may not provide enough 
sufficient functional lymphocytes. Thus, CAR-NK immu-
notherapy may be more applicable than CAR-T cells in 
the future. CAR-NK cells can be obtained from several 
different sources of NK cells, including peripheral blood-
derived NK (PB-NK) cells; cord blood-derived NK (CB-
NK) cells; some clonal cell lines such as KHYG-1, NK-92, 
NKL and YT cells; NK cells derived from human induced 
pluripotent stem cells (iPSC-NK) or human embryonic 
stem cells [47, 69, 126, 127].

PB-NK and CB-NK cells are both primary NK cells, 
which need to be activated and expanded before the cyto-
toxicity of CAR-NK therapy can be effectively exerted 
[128]. Many clinical trials used PB-NK cells as they are 

Table 2 Targets of CAR-NK cell-based therapy for hematological malignancies

Target Tumor NK cell sources CAR structures CAR transfer Reference Year

CD19 B-ALL PB scFv-4-1BB-CD3ζ Retrovirus [77] 2005

CD19 B-cell leukemia PB scFv-4-1BB-CD3ζ mRNA electroporation [78] 2012

CD19 B-ALL PB scFv-CD28-CD3ζ Lentivirus [79] 2016

CD19 B-cell precursor Leukemia PB scFv-CD28-4-1BB-CD3ζ Retrovirus [80] 2016

CD19 B-cell lymphoma NK-92 scFv-CD28-4-1BB-CD3ζ Lentivirus [81] 2017

CD19 B-cell malignancies UCB scFv-4-1BB-CD3ζ + iCasp9 + IL15 Retrovirus [82] 2018

CD19 B-cell leukemia NK-92 scFv-4-1BB-CD3ζ Lentivirus [83] 2020

CD19 B-cell lymphoma and 
precursor leukemia

PB scFv-4-1BB-CD3ζ + CXCR4 Lentivirus [84] 2020

CD19 B-ALL PB scFv-CD28-CD3ζ Retrovirus [53] 2020

CD19 B-cell lymphoma UCB iC9 + scFv-CD28-CD3ζ + IL-15 Retrovirus [85] 2021

CD19/BCMA B-cell malignancies NK-92 scFv-4-1BB-CD3ζ mRNA electroporation [86] 2022

CD20 Burkitt lymphoma PB scFv-4-1BB-CD3ζ mRNA electroporation [87] 2015

CD20 Burkitt lymphoma PB scFv-4-1BB-CD3ζ mRNA electroporation [88] 2017

CD138 multiple myeloma NK-92 ScFv-CD3ζ Lentivirus [89] 2014

CS-1 multiple myeloma NK-92 scFv-CD28-CD3ζ Lentivirus [90] 2014

BCMA multiple myeloma NK-92 scFv-4-1BB-CD3ζ Lentivirus [91] 2019

BCMA multiple myeloma PB ScFv-CD3ζ/DAP12 mRNA electroporation [92] 2022

CD38 AML PB scFv-CD28-CD3ζ mRNA electroporation [93] 2022

CD38 AML PB scFv-CD28-CD3ζ mRNA electroporation [68] 2020

CD33 AML PB scFv-4-1BB-CD3ζ Lentivirus [94] 2022

CD5 T-cell malignant cells NK-92 scFv-CD28-4-1BB-CD3ζ Lentivirus [95] 2017

CD5 T-cell malignant cells NK-92 scFv-2B4-CD3ζ Lentivirus [96] 2019

CD7 T-cell Leukemia NK-92 scFv-CD28-4-1BB-CD3ζ mRNA electroporation [97] 2019

CD123 AML PB scFv-CD28-4-1BB-CD3ζ Retrovirus [98] 2017

CD123 AML NK-92 scFv-CD28-4-1BB-CD3ζ Retrovirus [99] 2021

NKG2DL AML PB NKG2D-CD28-4-1BB-CD3ζ mRNA electroporation [100] 2021
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derived from HLA-mismatched donors with no risk of 
GVHDs [129]. NK cells can be isolated from peripheral 
blood mononuclear cells by CD3 depletion or combining 
consecutive CD56-positive selection of NK cell isolation 
kits [130–132]. Then they can be expanded and activated 
in NK cell-specific expansion media with cytokines and 
other stimulated cells suitable for clinical use [133]. It has 
been proved that a large number of highly active NK cells 
can still be obtained from frozen CB compared with fresh 
CB [134, 135]. Therefore, sufficient CB can be obtained 
at one time from the CB bank to produce large-scale 
CAR-NK cells, without temporary screening of a single 
qualified adult donor and leukapheresis as the PB-NK. 
In addition, the CB bank provides another strength for 
selecting NK cells of donors with certain HLA types 
and specific NK cell receptor characteristics. Select-
ing a donor with HLA-KIR mismatch may enhance the 

alloreactivity of NK cells [136, 137]. Therefore, compared 
with PB-NK, CAR-NK cells derived from CB-NK are 
more likely to serve as “off-the-shelf” products for cel-
lular immunotherapy. However, some researchers found 
that CB-NK cells have immature phenotypes, exhibit-
ing normal levels of degranulation but lower cytotoxic-
ity, with decreased expression of some molecules such as 
CD16 compared with PB-NK cells [138–140].

NK cell lines are also the main source of CAR-NK cells 
in preclinical and clinical studies as they are relatively 
easy to successfully transduce CAR genes [45]. Among 
these cell lines, NK-92 is the most commonly used and 
the only one approved by the FDA for clinical trials of 
CAR-NK-92 therapy [141]. Tang reported a first-in-man 
clinical trial of CD33-CAR NK-92 cells and showed that 
this therapy can be safely used in patients with relapsed 
and refractory AML [142]. There are a series of activated 

Table 3 Targets of CAR-NK cell-based therapy for solid tumors

Target Tumor NK cell sources CAR structures CAR transfer Reference Year

HER2 Breast and Ovarian carcinoma PB scFv-CD28-CD3ζ Retrovirus [101] 2008

HER2 Breast cancer NK-92 scFv-CD28-CD3ζ mRNA electroporation [102] 2015

HER2 Breast cancer and Renal cell 
carcinoma

NK-92 scFv‐CD3ζ/scFv-CD28-CD3ζ/
scFv-4-1BB-CD3ζ

Lentivirus [103] 2015

HER2 Glioblastoma NK-92 scFv-CD28-CD3ζ Lentivirus [104] 2016

HER2 Gastric cancer NK-92 scFv-4-1BB-CD3ζ Lentivirus [105] 2019

EGFR/EGFRvIII Glioblastoma NK-92/NKL cells/PB scFv-CD2-CD3ζ Lentivirus [76] 2015

EGFR/EGFRvIII Glioblastoma NK cell line YTS scFv-DAP12 + CXCR4 Lentivirus [106] 2015

EGFR/EGFRvIII Breast cancer/Brain metastases NK-92/PB scFv-CD28-CD3ζ Lentivirus [107] 2016

EGFR/EGFRvIII Glioblastoma PB scFv-CD28-CD3ζ Retrovirus [108] 2021

EGFR/EGFRvIII Breast cancer PB scFv-CD28-4-1BB-CD3ζ Lentivirus [109] 2020

GD2 Neuroblastoma NK-92 scFv-CD3ζ Retrovirus [110] 2012

GD2 Ewing sarcomas PB scFv-4-1BB-2B4-CD3ζ Retrovirus [111] 2016

Mesothelin Ovarian cancer iPSC-NK cells/NK-92 scFv-NKG2D-2B4-CD3ζ
scFv-NKG2D-2B4-DAP10-CD3ζ
scFv-NKG2D-4-1BB-2B4-CD3ζ

Transposon transfection [33] 2018

Mesothelin Ovarian cancer NK-92 scFv-CD28-4-1BB-CD3ζ Lentivirus [112] 2020

Mesothelin gastric cancer NK-92 scFv-NKG2D-2B4-CD3ζ Lentivirus [113] 2021

PSCA Prostate cancer/Bladder carci-
noma/Glioblastoma

NK cell line YTS scFv-DAP12/scFv-CD3ζ Lentivirus [40] 2015

PSMA Prostate cancer NK-92 scFv-CD28-CD3ζ Lentivirus [114] 2020

PSMA Prostate cancer NK-92 scFv-NKG2D-2B4-CD3ζ Lentivirus [115] 2022

Glypican-3 Hepatocellular carcinoma NK-92 scFv-CD28-CD3ζ Lentivirus [116] 2018

Glypican-3 Ovarian cancer iPSC-NK scFv-CD28-4-1BB-CD3ζ Lentivirus [117] 2020

Glypican-3 Hepatocellular carcinoma NK-92 scFv-CD3ζ/scFv-CD28-CD3ζ/
scFv-DNAM1 or 2B4-CD3ζ

Lentivirus [118] 2020

EpCAM Breast carcinoma NK-92 scFv-CD28-CD3ζ + IL-15 Lentivirus [119] 2012

HLA-G Solid tumor PB scFv-KIR2DS4-DAP12 + iCasp9 Lentivirus [120] 2021

GPA7 Melanoma NK-92 scFv-CD3ζ mRNA electroporation [121] 2017

c-MET Hepatocellular carcinoma PB scFv-4-1BB-DAP12-EGFRt-V5 Lentivirus [122] 2019

B7-H3 Non-small cell lung cancer NK-92 scFv-4-1BB-CD3ζ Lentivirus [123] 2020

DLL3 Small cell lung cancer NK-92 scFv-NKG2D-2B4-CD3ζ Lentivirus [124] 2022
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receptors but almost no inhibitory killer receptors 
expressed on NK-92 cells, and NK-92 cells are unable to 
mediate ADCC because of shortage of the CD16 recep-
tor [143–145]. CAR-engineered NK-92 cells have strong 
cytotoxicity and can obtain a large number of cells with 
the same phenotypes in a short time [86, 146]. The dis-
advantage of CAR-NK92 cells is that they must be irradi-
ated to avoid malignant proliferation before infused into 
patients [83]. The proliferation of irradiated CAR-NK 
cells is inhibited in  vivo, which leads to a short persis-
tence time [114]. Although it can avoid some side effects 
of CAR-T therapy such as “off-target effects,” it also 
reduces its anti-tumor effect, thereby requiring multiple 
transfusions.

NK cells can also be generated from hematopoietic 
progenitor cells (HPCs). Peripheral blood apheresis 
after stimulation, CB, bone marrow, and ESC are the 
approaches for obtaining  CD34+HPC [147, 148]. After 
induced by the culture medium including a mixture of 
cytokines such as IL-3, stem cell factor, IL-15, FLT3L 
and IL-7,  CD34+HPC will differentiate into NK cells for 
adoptive immunotherapy [149]. IPSC-NK is considered 
to be a potential cell source for “off-the-shelf” CAR-NK 
products because of its unlimited expansion ability and 
higher transduction efficiency than primary NK cells [33, 
150, 151]. After proper ways of differentiation and expan-
sion, only one CAR-iPSC cell can be used to obtain a 
large number of CAR-NK cells with uniform phenotypes. 
That’s why it is easier to get a standardized “off-the-shelf” 
product. However, similar to CB-NK, iPSC-NK cells have 
lower cytotoxicity due to their immature phenotypes 
such as low CD16 and KIR expression, and high NKG2A 
expression compared with PB-NK cells [151–153]. 
Therefore, some problems need to be addressed before 
iPSCs can be used on a large scale in the future. The first 
clinical trial about CAR-engineered iPSC-NK product, 
FT596, was carried out in 2019. These CD19-targeted 
CAR iPSC-NK cells express a high-affinity, non-cleavable 
CD16 with an IL-15 receptor fusion protein. Therefore, 
their anti-tumor ability was enhanced by overcoming the 
low expression of CD16 and improving the expansion 
and persistence of CAR-NK cells in  vivo. The ongoing 
phase I trial (NCT04245722) also provides a promising 
guidance for CAR-iPSC-NK to become “off-the-shelf” 
products for clinical cellular immunotherapy.

Better safety and multiple available mechanisms 
of cytotoxicity
In contrast to CAR-T cell-based immunotherapy, CAR-
NK cells have superior safety performance mainly 
reflected in the following aspects. First, allogeneic NK 
cells do not cause a lethal risk of GVHD that extremely 
associated with T cells, which has been verified in some 

animal or human clinical trials of CAR-NK cells [154, 
155]. In addition, the cytokines secreted by NK cells 
are almost GM-CSF and IFN-γ with lower toxicity pro-
files [156]. They are different from most inflammatory 
cytokines secreted by T cells such as IL-1, IL-2, IL-6, 
TNF-a, IL-8, IL-15, MCP1, and IL-10, which are closely 
related to the side effects of CAR-T therapy [157, 158]. 
Therefore, CAR-NK cells injected into the patient nearly 
have no side effects such as CRS or ICANS, making them 
become a more attractive choice for anti-tumor cellular 
immunotherapy. In addition, the lifespan of NK cells in 
the blood cycle is relatively limited [159], further reduc-
ing the potential for toxicity to normal tissue, such as B 
cell aplasia caused by long-term persistence of CAR-T 
cells in  vivo [160]. But it is possible that designed CAR 
structures will induce unanticipated toxicity due to 
excessive cytokine production [161]. Considering the 
potential toxicity caused by long-lived genetically modi-
fied CAR-NK cells, suicide genes have been used as safety 
switches and inducible caspase 9 (iCas9) has been shown 
to effectively eliminate CAR-NK cells both in  vitro and 
in vivo [162, 163].

As mentioned earlier, NK cells release cytotoxic-
ity depending on their germline-encoded activating 
and inhibitory receptors. And they do not rely on the 
existence of tumor-associated antigens on tumor cells. 
Therefore, even if tumor cells initiate immune escape 
mechanisms and lead to the down-regulation of the tar-
geted antigens, CAR-NK cells can still reserve the intrin-
sic killing efficiency mediated by their receptors. Some 
studies have also attempted to add a fusion protein of 
CD16 into the CAR structure to enhance ADCC [164, 
165]. A high-affinity, non-cleavable CD16 (hnCD16) 
expressed on NK cells with CAR structures provides the 
possibility of combining CAR-NK cells with antibodies 
targeting different antigens. An iPSC-derived CAR-NK 
cell product, iDuo NK cell, is engineered with three func-
tional elements including a CD19-CAR, a high-affinity 
and non-cleavable CD16, and a membrane-bound IL-15/
IL-15R fusion molecule (IL-15RF). The modified iDuo 
NK cells exhibited effective elimination of both  CD19+ 
and  CD20+ lymphoma cells through a combination of 
intrinsic cytotoxicity, anti-CD19 CAR mediated killing, 
and ADCC mediated by hnCD16 engagement with ritux-
imab [166]. Thus, unlike CAR-T cells that only rely on 
CAR-targeted mechanism, CAR-NK cells keep immune-
monitoring and killing tumor cells that express different 
levels of CAR-targeted antigens through multiple cyto-
toxic mechanisms.

High feasibility of “off-the-shelf” products
Simplifying the manufacturing process and saving cost 
are also major difficulties that should be overcome for 
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the clinical widespread of CAR-T therapy. Many studies 
made efforts to develop efficient and reliable “off-the-
shelf” T cell products. However, the requirements of indi-
vidual specificity for autologous CAR-T cells, demand for 
facilities for cold-chain transportation, and unavoidable 
GVHD risks make it difficult to achieve. Unlike CAR-T 
cells, CAR-NK cells are regarded as an ideal alterna-
tive platform for cancer immunotherapy by research-
ers because of their unique advantages and the potential 
for the production of “off-the-shelf” immunotherapeu-
tic products. For example, NK-92 cells engineered to 
express different CARs targeting CD19, CD20, CD38, 
HER2, PSMA or GD2 were considered as allogeneic “off-
the-shelf” immunotherapeutic products and held great 
promise for the development of effective anti-cancer 
treatments [114, 144, 167, 168]. Moreover, CAR-NK cells 
obtained from iPSC are a standardized homogeneous 
cell population that can be promoted in a clinically scal-
able manner [151, 169]. With abundant sources, no risk 
of GVHD response, and no need for patient-specificity, 
CAR-NK cells are more feasible to steadily acquire “off-
the-shelf” products.

CAR-NK cells against solid tumors
Although there are large similarities between CAR-NK 
and CAR-T cell therapies and they are both known to be 
effective against hematological malignancies, the inef-
ficiency of CAR-T cells in solid tumors should not be 
extended to CAR-NK therapy. The natural properties of 
NK cells and multiple killing mechanisms offer a promis-
ing prospect for CAR-NK cells in solid cancer therapy. A 
growing number of studies have examined the activity of 
CAR-NK cells against solid tumors, such as glioblastoma, 
breast, ovarian and pancreatic cancer [170]. Intracranial 
injections of bispecific EGFR- and EGFRvIII- targeted 
CAR-NK-92 prolonged the survival of glioblastoma 
xenograft mouse [171]. Several studies have demon-
strated the effectiveness of CAR-NK cell therapies target-
ing mesothelin, CD24 and glypican-3 in ovarian cancer 
models [112, 117, 172]. Additionally, the first clinical 
trial of CAR-NK therapy for solid tumor treatment used 
MUC-1 CAR-NK cells to target against multiple malig-
nant solid tumors, e.g., glioblastoma, pancreatic, colo-
rectal, breast and ovarian cancer (NCT02839954). Of 
the eight patients, seven achieved stable disease without 
serious adverse events. Although CAR-NK therapy has 
a bright potential for solid tumor, there are still many 
limitations to overcome. Furthermore, the application of 
CAR-NK therapy for solid tumors may require additional 
modifications of the NK cells beyond CAR transduction 
to improve intratumor trafficking, overcome the immu-
nosuppressive TME and prevent tumor antigens escape.

Current clinical trials of CAR-NK cell immunotherapy
As of June 2022, there have been 32 clinical trials (sum-
marized in Table  4) of CAR-NK therapy registered on 
the ClinicalTrials.Gov website. Two of them have been 
completed, nine of them are in early phase I, and 21 of 
them are in phase I/II. Among these trials, there are 
some targets for hematological malignant tumors, such 
as CD19, CD7, BCMA, CD33, CD22. Eleven trials are 
about solid tumors (including ovarian cancer, prostate 
cancer, non-small cell lung cancer, pancreatic cancer, 
and glioblastoma), in which CAR-NK cells target some 
over-expressed antigens such as MUC1, PSMA, ROBO1, 
mesothelin, and HER2. According to the data disclosed, 
PB-NK (8/32) and NK-92 (9/32) are the most com-
mon cell sources, and lentiviral transduction is mostly 
used (not shown in the table). To date, the results of a 
few clinical trials have been published. Two are small-
scale (n = 3) clinical trials, using NK-92 targeting CD33 
(NCT02944162) and PB-NK cells targeting NKG2DL 
(NCT03415100) [63, 142]. Both the small-scale clini-
cal trials demonstrated the advantages of CAR-NK in 
the treatment of tumors, such as not inducing GVHD or 
other immune toxicities, providing the potential of “off-
the-shelf” products for cancer immunotherapy.

Another one is a promising large-scale (NCT03056339) 
phase I/II clinical trial, which was published in February 
2020. In this large-scale trial, 11 patients with R/R CD19-
positive cancers (non-Hodgkin’s lymphoma or chronic 
lymphocytic leukemia) received an allogeneic CB-derived 
CAR-NK cell product after lymphodepleting chemo-
therapy [173]. Anti-CD19 CAR-NK cells were trans-
duced to express IL-15 and an iCaspase-9-based safety 
switch. Eight of the 11 patients (73%) received treatment 
had no obvious side effects, such as CRS, ICANS and 
GVHD, seven patients had complete remission. The cor-
responding preclinical study reported that CB-derived 
NK cells were transduced with the genes for CAR-CD19 
and IL-15. These cells showed effective cytotoxicity and 
apparent prolongation of survival with IL-15 production 
by the transduced CB-NK cells in a xenograft Raji lym-
phoma murine model [82]. In this clinical trial, expansion 
was observed as early as 3 days after injection. And CAR-
NK cells persisted for at least 12 months, which was also 
associated with the incorporation of IL-15 in the CAR 
vector. In summary, the small progress of clinical trials 
indicates a bright future for the clinical application of 
CAR-NK products.

Obstacles to the popularization of CAR-NK therapy 
and corresponding coping strategies
Regardless of the great prospect of CAR-NK cells in 
tumor immunotherapy, there are still some thorny 
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Table 4 Current clinical trials of CAR-NK registered on ClinicalTrials.Gov

NCT number Cancer type NK source Target CAR structure Country Phase Initial year State

NCT04639739 non-Hodgkin lym-
phoma

Unknown CD19 Unknown China Early phase 1 2020/11 Not recruited

NCT03692637 Epithelial ovarian 
cancer

PB-NK Mesothelin Unknown China Early phase 1 2018/10 Not recruited

NCT03692663 Castration-resistant 
prostate cancer

Unknown PSMA Unknown China Early phase 1 2018/10 Not recruited

NCT03692767 Refractory B-cell Lym-
phoma

Unknown CD22 Unknown China Early phase 1 2018/10 Not recruited

NCT03690310 Refractory B-cell lym-
phoma

Unknown CD19 Unknown China Early phase 1 2018/10 Not recruited

NCT03824964 Refractory B-cell lym-
phoma

Unknown CD19/CD22 Unknown China Early phase 1 2019/1 Unknown

NCT03415100 NKG2D-ligand 
expressing solid 
cancer(metastatic solid 
tumors)

PB-NK NKG2D-L ScFv-CD8aTM-CD3ζ
ScFv-CD8aTM-DAP12

China Phase 1 2018/1 Recruited

NCT00995137 B-ALL PB-NK CD19 ScFv-CD8aTM-CD137-
CD3ζ

USA Phase 1 2009/10 Completed

NCT03383978 Glioblastoma NK-92 Her2 ScFv-CD28-CD3ζ Germany Phase 1 2017/12 Recruited

NCT04245722 B-cell lymphoma or 
chronic lymphocytic 
leukemia

iPSC (FT596) CD19 scFv-NKG2D-2B4-CD3ζ-
IL-15/R-hnCD16

USA Phase 1 2020/1 Recruited

NCT03940833 Multiple myeloma NK-92 BCMA Unknown China Phase1/Phase 2 2019/5 Recruited

NCT03940820 ROBO1 expression in 
solid tumor

NK-92 ROBO1 Unknown China Phase1/Phase 2 2019/5 Recruited

NCT02944162 CD33 + acute myeloid 
leukemias

NK-92 CD33 ScFv-CD28-CD137-
CD3ζ

China Phase1/Phase 2 2016/10 Completed

NCT02742727 Leukemia and lym-
phoma

NK-92 CD7 ScFv-CD28-4-1BB-CD3ζ China Phase1/Phase 2 2016/4 Recruited

NCT03579927 B-cell lymphoma Cord blood CD19 CD19-CD28-zeta-2A-
iCasp9-IL15

USA Phase1/Phase 2 2018/7 Withdrawn

NCT02839954 MUC1 positive relapsed 
or refractory solid 
tumor

NK-92 MUC1 ScFv-CD28-4-1BB-CD3ζ China Phase1/Phase 2 2016/7 Unknown

NCT02892695 Lymphoma, leukemias NK-92 CD19 ScFv-CD28-4-1BB-CD3ζ China Phase1/Phase 2 2016/9 Unknown

NCT03056339 B-cell lymphoma Cord blood CD19 iCasp9-ScFv-CD28-
CD3ζ-IL-15

USA Phase1/Phase 2 2017/2 Recruited

NCT03941457 Pancreatic cancer NK-92 ROBO1 Unknown China Phase1/Phase 2 2019/5 Recruited

NCT05410717 Claudin6 expressed 
solid tumor

PB-NK Claudin6 Unknown China Phase1/Phase 2 2022/6 Recruited

NCT05213195 Colorectal Cancer Unknown NKG2D-L Unknown China Phase 1 2021/12 Recruited

NCT05008536 Multiple Myeloma Cord blood BCMA Unknown China Early phase 1 2021/10 Recruited

NCT05247957 NKG2DL expressed 
AML

Cord blood NKG2D-L Unknown China Phase 1 2021/10 Recruited

NCT05215015 AML Unknown CD33/CLL1 Unknown China Early phase 1 2021/11 Recruited

NCT05008575 AML Unknown CD33 Unknown China Phase 1 2021/12 Recruited

NCT05194709 Advanced Solid Tumors Unknown 5T4 Unknown China Early phase 1 2021/12 Recruited

NCT04887012 B-cell NHL PB-NK CD19 Unknown China Phase 1 2021/05 Recruited

NCT05020678 B-cell malignancies PB-NK CD19 CD19ScFv-CD8aTM-
OX40-CD3ζ-T2A-IL15

USA Phase 1 2021/08 Recruited

NCT04847466 Gastric or Head and 
Neck Cancer

NK-92 PD-L1 Unknown USA Phase 2 2021/12 Recruited

NCT04623944 AML or MDS PB-NK NKG2D-L ScFv-CD8aTM-OX40-
CD3ζ-T2A-IL15

USA Phase 1 2020/09 Recruited

NCT05410041 B-cell malignancies PB-NK CD19 Unknown China Phase 1 2022/05 Recruited
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problems hindering their further approval and pro-
motion. Researchers are constantly exploring how to 
improve them for their successful popularization in the 
clinic.

Expansion and purification of NK cells
A large-scale highly cytotoxic NK cells are needed for 
clinical adoptive therapy. The proportion of NK cells in 
peripheral blood lymphocytes does not exceed 10–15%, 
so in  vitro culture for expansion is needed. Some 
cytokines can improve the expansion of NK cells, but 
it is very difficult to induce a constant proliferation of 
human NK cells under a kind of cytokine such as IL-2 
[174]. Some researchers have shown that IL-2 in com-
bination with other cytokines (anti-CD3 antibody or 
IL-15) can exert better stimulatory effects on NK cells 
[175–177]. Chronic myelogenous leukemia-derived cell 
line K562 can stimulate NK cells [178], but the unmodi-
fied K562 cell is of limited use. It needs to be modified 
before it can be used to amplify NK cells. Co-culturing 
PB-NK cells with K562 feeder cells genetically modified 
to express IL-15 and the adhesion molecule 4-1BBL is a 
good method [78]. A manually performed experiment 
with GMP-compliant media containing IL-2, IL-21 and 
irradiated autologous feeder cells made an effective cell 
expansion, which induced an 85-fold NK cell expansion 
[98]. Recently, Yan Yang et  al. applied a new feeder cell 
system (human B-lymphoblastoid cell-line 721.221) with 
human B-lymphoblastoid cell-line 721.221 to stimulate 
NK cells. The results showed that new feeder cells were 
superior to K562-mIL-21 cells with better proliferation 
and less apoptosis during expansion [179]. NK cells from 
human ESC and iPSC have been certified to have func-
tions similar to conventional primary cells. But they are 
more homogenous and feasible to be genetically modi-
fied at a clonal level, and easy to be expanded in a clini-
cal scale [139, 153, 180]. Another trouble is allogenic 
NK cells may be contaminated with T cells. In a first-
in-human trial of adoptive transfer of donor-derived 
IL-15/4-1BBL-activated NK cells (aNK), researchers 
found that aNK-DLI contributed to acute GVHD, likely 
by augmenting the underlying T-cell alloreactivity [181]. 
Pre-lymphocyte deletion may contribute to purifying NK 
cells [182]. Moreover, regulatory T cells and myeloid-
derived suppressor cells (MDSCs) may influence NK 
cells therapies [45]. It is necessary that finding a suitable 

method to expand and purify NK cells to serve the clinic 
effectively.

Persistence of CAR‑NK cells in vivo
NK cells do not go through massive expansions and have 
a limited lifespan in vivo, which is why they do not cause 
severe side effects unlike CAR-T cells but result in low 
persistence. Cytokines such as IL-2 and IL-15 are key 
molecules involved in NK cells functions, including dif-
ferentiation, proliferation, activation, and survival [183, 
184]. IL-2 diphtheria toxin fusion protein (IL-2DT) may 
improve the expansion of NK cells in AML patients [185]. 
However, a high dose of IL-2 can cause serious adverse 
effects [186]. IL-15 has been demonstrated to stimulate 
NK cells proliferation and up-regulate activating recep-
tor NKp30 expression on NK cells in vitro [82, 187, 188]. 
ALT-803, a kind of superagonist, was shown to be well 
tolerated by patients and could promote  CD8+ T and 
NK cell expansion in  vivo [188]. A TriKE (IL-15 trispe-
cific killer engager that targets CD33) was constructed 
to induce expansion and persistence in vivo with a modi-
fied IL-15 cross-link [189, 190]. Currently, TriKE is being 
evaluated in phase I/II clinical trials in patients with 
CD33-expressing high-risk myelodysplastic syndromes, 
such as R/R AML (NCT03214666).

Suppression of TME
After being attacked, tumor cells may directly inhibit the 
functions of CAR-NK cells or contribute to the genera-
tion of a local suppressive TME. This is the reason why 
CAR-NK cells, with high cytotoxicity against cancer cells, 
gradually lose their anti-tumor ability in vivo.

Tumor cells can produce some soluble immune factors 
such as TGF-β, prostaglandin E2 (PGE2), indoleamine 
2,3-dioxygenase (IDO), IL-10, and PD-1, which suppress 
the function of NK cells. Produced by neutrophils, mac-
rophages, and Tregs in the TME, TGF-β may affect the 
metabolism of NK cells and down-regulate NKG2D and 
NKp30 expression [191, 192]. Tregs and immunosup-
pressive MDSCs are actively recruited to the local TME 
to inhibit the cytotoxicity of CAR-NK cells and promote 
tumor growth [193]. PGE2 has a negative impact on the 
differentiation and cytotoxicity of NK cells, and inhibits 
expression of NKp44 and NKp30 on NK cells. [194, 195].

TME is frequently characterized by hypoxia and it is a 
common metabolic disturbance. It can greatly influence 
NK cells by affecting their metabolism and infiltration, 

Table 4 (continued)

NCT number Cancer type NK source Target CAR structure Country Phase Initial year State

NCT05182073 Multiple Myeloma iPSC (FT576) BCMA scFv-NKG2D-2B4-CD3ζ-
IL-15/R-hnCD16

USA Phase 1 2021/11 Recruited
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cytokines production, and expression of several acti-
vating receptors [196–198]. Activating receptors such 
as NKp30, NKp46, NKp44, and NKG2D on NK cells 
would be down-regulated for tumor growth and metas-
tasis [197]. CD73 induces the expression of arginase, an 
immunosuppressive metabolite. Arginase is produced 
under hypoxia conditions and inhibits NK cell func-
tions. The inhibition of CD73 increases the homing of 
NKG2D-CAR NK cells that target tumor cells expressing 
NKG2D ligands and improves anti-tumor responses in 
animal models of lung cancer [199]. In terms of migra-
tion, hypoxia may also influence the surface expression 
of CCR7 and CXCR4 on CD56 bright NK cells, increas-
ing their migration response to CCL19/21 and CXCL12 
[198].

Tumor cells can also express ligands for the so-called 
checkpoint proteins that help tumor cells evade immune 
surveillance. PD-1 has been verified to be expressed in 
PB-NK cells from patients with multiple myeloma, and in 
blood and tumor-associated NK cells from patients with 
renal and ovarian cancers [200–202]. CAR constructions 
combined with blockers of checkpoint proteins such as 
anti-PD-1, CTLA-4, LAG3, and TIGIT have more ther-
apeutic benefits compared with using traditional CAR 
structures [203]. NK-92 cells engineered to express high-
affinity CD16, IL-2, and PD-L1-specific CAR structure 
released high levels of perforin and granzyme and lysed 
human cancer cell lines including breast, lung, and gas-
tric cancers [204].

Storage, shipping, and recovery of “off-the-shelf” CAR-NK 
cells
The storage, shipping, and recovery of “off-the-shelf” 
CAR-NK cells are necessary to facilitate large-scale 
clinical promotion, but some problems come across dur-
ing these processes. Compared with T cells, NK cells 
are more sensitive to the process of freezing and thaw-
ing. The survival rate and cytotoxicity of NK cells are 
significantly down-regulated after thawing [205]. Some 
researchers found that the influence of frozen NK cells 
can be improved by culturing with IL-2 [206]. Moreo-
ver, cytokine-activated NK cells are very sensitive to 
lower temperature [207]. Their cytotoxicity should be 
maintained under body temperature during the pro-
cess of shipping. Appropriate cell density is also crucial 
in the process of shipping. High cell concentrations may 
lead to the loss of cells activity possibly due to the rapid 
consumption of medium and changes in glucose and pH 
value. Moreover, the quality of cells is difficult to control 
in the shipping process. The sensitivity of NK cells to 
cryopreservation makes them difficult to store and trans-
port, which is a limitation of CAR-NK cell therapy. Strat-
egies for optimal cryopreservation must be explored to 

make CAR-NK cells therapy available for “off-the-shelf” 
products.

Combination strategies of CAR-NK cells with other 
therapies
NK cells express CD16 and exert tumor killing through 
ADCC. Another strategy for combination therapy is to 
combine CAR-NK cells with antibodies targeting dif-
ferent tumor antigens. The ADCC-inducing antibod-
ies of anti-CD20, anti-HER2, anti-EGFR and anti-GD2 
have promising results on refractory NHL, breast can-
cer, colorectal cancer and neuroblastoma [208]. FT596 
not only targeted  CD19+ lymphoma, but also exhibited 
enhanced killing effect on the  CD20+ lymphoma cells 
when combined with the anti-CD20 antibody rituximab 
(NCT04245722). IL-2 and IL-15 have been identified as 
key cytokines that upregulate the activity of NK cells. The 
antitumor effect of PD-L1 CAR-NK cells, in combina-
tion with anti-PD-1 and N-803, an IL-15 superagonist, 
resulted in superior control of tumor growth in C57BL/6 
mice [204]. Therefore, cytokines-based treatment may 
improve the persistence and cytotoxicity of CAR-NK 
cells. In addition, chemotherapy not only reduces rejec-
tion of infused allogeneic NK cells by the recipient, but 
may also reprogram the TME to facilitate NK cell infil-
tration and survival in  vivo [209]. The sequential treat-
ment with chemotherapeutic agent followed by CAR-NK 
cells led to the strongest clinical efficacy of ovarian can-
cer [210]. Chemotherapy remains an important adjuvant 
therapeutic approach for future CAR-NK cell therapy.

Blockade of PD-1/PDL1 axis in combination with 
CAR-T therapy has been proved to be effectively in 
improving the anti-tumor effect [211, 212]. PD-1 disrup-
tion by CRISPR/Cas9 augments anti-CD19 CAR-T cell 
mediated tumor killing [213]. Similar to T cells, NK cells 
express some immune checkpoints molecules that inhibit 
the anti-tumor activity of activated NK cells. Immune 
checkpoint blockade (ICB) therapies by corresponding 
antibodies (e.g., anti-PD1/PDL1 and anti-CTLA4) that 
block inhibitory signals of NK  cells activation can also 
enhance NK cell activity. Combination therapy of anti-
PSMA CAR-NK cells and anti-PD-L1 monoclonal anti-
body enhances the anti-tumor efficacy against prostate 
cancer [115]. Studies have demonstrated that targeting 
ICB molecules like PD-1/PDL1 or B7-H3 can enhance 
the anti-tumor activity of CAR-NK cells [214, 215]. The 
silencing of immune checkpoint NKG2A enhances NK 
cell mediated cytotoxicity against multiple myeloma 
[216]. Therefore, CAR-NK cells in combination with ICB 
therapy or with knockout of ICB molecules by gene-edit-
ing will be a promising approach for improving the effi-
ciency of CAR-NK therapy, especially for solid tumors.
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Conclusion and outlook
Currently, CAR-NK cell-based therapy has become a 
popular research field because of its unique advantages 
and feasibility of “off-the-shelf ” products compared 
with CAR-T therapy, so it might become an alterna-
tive cellular immunotherapy for cancers. Combining 
CAR engineering with CD16 expression on NK cells 
also further enhances their anti-tumor ability by utterly 
utilizing their cytotoxic capacity and ADCC. However, 
some problems need to be studied and addressed con-
tinuously, including how to optimize the gene editing 
technology of CAR structure specific for NK cells, how 
to expand and activate NK cells briefly and effectively, 
and how to improve persistence and repair TME to 
advance the therapeutic effect of solid tumors. With 
the approval of more clinical trials and the guidance of 
more clinical data in the next few years, CAR-NK cells 
will be gradually optimized to provide efficient and safe 
“off-the-shelf ” products for cancer immunotherapy.
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