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Abstract 

Targeting B-cell receptor signalling using Bruton tyrosine kinase (BTK) inhibitors (BTKis) has become a highly success-
ful treatment modality for B-cell malignancies, especially for chronic lymphocytic leukaemia. However, long-term 
administration of BTKis can be complicated by adverse on- and/or off-target effects in particular cell types. BTK is 
widely expressed in cells of haematopoietic origin, which are pivotal components of the tumour microenvironment. 
BTKis, thus, show broad immunomodulatory effects on various non-B immune cell subsets by inhibiting specific 
immune receptors, including T-cell receptor and Toll-like receptors. Furthermore, due to the off-target inhibition 
of other kinases, such as IL-2-inducible T-cell kinase, epidermal growth factor receptor, and the TEC and SRC family 
kinases, BTKis have additional distinct effects on T cells, natural killer cells, platelets, cardiomyocytes, and other cell 
types. Such mechanisms of action might contribute to the exceptionally high clinical efficacy as well as the unique 
profiles of adverse effects, including infections, bleeding, and atrial fibrillation, observed during BTKi administration. 
However, the immune defects and related infections caused by BTKis have not received sufficient attention in clinical 
studies till date. The broad involvement of BTK in immunological pathways provides a rationale to combine BTKis with 
specific immunotherapies, such as immune checkpoint inhibitor or chimeric antigen receptor-T-cell therapy, for the 
treatment of relapsed or refractory diseases. This review discusses and summarises the above-mentioned issues as a 
reference for clinicians and researchers.
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Background
B-cell lymphomas (BCLs), which include chronic lym-
phocytic leukaemia (CLL), diffuse large B-cell lym-
phoma, mantle cell lymphoma (MCL), Waldenstrom 
macroglobulinaemia (WM) and so on, are the most fre-
quent haematologic malignancies. With the development 
of small-molecule targeted drugs such as Bruton’s tyros-
ine kinase (BTK) inhibitors (BTKis), B-cell lymphoma 2 
inhibitors, and phosphoinositide 3-kinase (PI3K) inhibi-
tors, treatment of BCL has undergone a tremendous 

change, especially for CLL. The use of BTKis, in particu-
lar, has benefited many patients, including those at high 
risk. The first-generation BTKi ibrutinib inhibits the pro-
liferation and survival of B cells by irreversibly binding 
BTK C481 and blocking the B-cell receptor (BCR) signal-
ling pathway. Ibrutinib also binds to other kinases, such 
as IL-2-inducible T-cell kinase (ITK), epidermal growth 
factor receptor (EGFR) [1], and TEC and SRC family 
kinases [2], to induce off-target effects. Although the 
antitumour activities of BTKis depend on both on-target 
and off-target effects, adverse events such as rashes, atrial 
fibrillation, and bleeding should not be ignored. The 
next-generation BTKis acalabrutinib, zanubrutinib, and 
orelabrutinib show higher selectivity and fewer off-target 
effects than ibrutinib, thereby limiting the adverse events 
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profoundly. Till date, the inhibitors have been success-
fully approved for the treatment of relapsed/refractory 
(R/R) MCL and CLL. Recently, zanubrutinib has been 
approved for WM. Non-covalent BTKis, such as pirto-
brutinib, vecabrutinib, and fenebrutinib, may have fewer 
adverse effects than the covalent BTK inhibitors and have 
shown promising safety profiles and efficacy in clinical 
trials.

Treatment with a BTKi potentially impacts both innate 
and adaptive immunity, including the number and func-
tion of various immune cells. BTK looks like a type of 
‘Swiss Army knife’ and is expressed in myeloid and other 
innate immune cells. Thus, inhibition of BTK with a BTKi 
leads to changes in immune cell numbers. Additionally, 
different BTKis play pleiotropic roles (different effects on 
different types of target cells) in the regulation of immune 
cell function. Ibrutinib inhibits rituximab-dependent NK 
cell-mediated cytotoxicity, while acalabrutinib, orelabru-
tinib, and fenebrutinib have no effect on ITK- and NK 
cell-mediated antibody-dependent cellular cytotoxicity 
(ADCC), making them promising candidates for combi-
nation therapy with anti-CD20 antibodies. In addition, 
the influence of ibrutinib on T cells provides a rationale 
for the combined use of programmed cell death-ligand 
1 (PD-L1) inhibitors, chimeric antigen receptor-T-cell 
(CAR-T) therapy, or bispecific antibody (BiAb) with a 
BTKi. Despite having no inhibitory effect on ITK, the 
next-generation BTKi acalabrutinib benefits CAR-T ther-
apy; however, the exact mechanism remains unclear [3].

Tumour microenvironment (TME) plays a crucial role 
in the survival and growth of tumour cells by providing 
inhibitory or stimulatory signals, including BCR signals 
[4]. BTK can transmit and enhance molecular signals 
on the surface of various cells that communicate with 
the TME, via the Toll-like receptor (TLR) and FcγR on 
macrophages, dendritic cells, mast cells, and basophils 
[5]. In addition, BTK is a regulator of the NACHT, LRR, 
and PYD domain-containing protein 3 (NLRP3) inflam-
masome, which has been observed to be associated with 
various infections, including coronavirus disease 2019 
(COVID-19), myocardial infarction, and other diseases 
such as Alzheimer’s disease and atherosclerosis [6]. 
Among the side effects, infections are associated with 
severity and poor prognosis in patients and are par-
ticularly complicated to manage. Moreover, BTKis have 
recently been shown to impact vaccination [7].

At present, the mechanisms of combination strategies 
of BTKis with specific immunotherapies are unclear. 
In addition, infections caused by the use of BTKis are 
common in clinical practice but have not attracted suf-
ficient attention yet. Therefore, comprehensive explo-
ration and understanding of these issues are urgently 

required. This review aimed to examine the pleiotropic 
effects of BTKis on the immune system and the poten-
tial combination strategies comprising BTKi and dif-
ferent immunotherapies, which may provide practical 
advice on the management of BTKi-related toxicity and 
shed light on optimal treatment options.

BCR/BTK signaling in normal and malignant B cells
BCR is a transmembrane protein complex that controls 
B-cell fate from the beginning of its expression in the 
form of pro-BCR and pre-BCR and thus guides cell 
maturation, survival, apoptosis and the production of 
antibodies in plasma cells [8, 9]. BCR signaling is con-
nected by a network of kinases and phosphatases that 
tune and amplify its activation. In general, BCR signal-
ing pathways can be classified into two types: chroni-
cally activated BCR and tonic BCR [10]. Chronically 
activated BCR is an antigen-dependent process mainly 
utilizing the canonical nuclear factor-kB (NF-kB) path-
way, MAPK/ERK pathways and ect. Conversely, tonic 
BCR maintains B cell survival through PI3K/AKT path-
way by antigen-independent process [9, 11] (Fig. 1).

BTK is a non-receptor intracellular kinase that 
belongs to the TEC family of tyrosine kinases, together 
with bone marrow-expressed kinase (BMX), redun-
dant-resting lymphocyte kinase, and ITK. BTK has: (i) a 
kinase domain with enzymatic activity, (ii) SRC homol-
ogy (SH) domains (including SH2 and SH3), (iii) a TEC 
homology (TH) domain, and (iv) an N-terminal pleck-
strin homology (PH) domain [12, 13] (Fig. 2). BTK acts 
as a crucial component to couple BCR to more distal 
signaling, whose inactivation results in defects in B-cell 
development and function [14]. Upon BCR activation, 
BTK is recruited to the plasma membrane from cyto-
plasm by its PH domain binding phosphatidylinositol 
(3,4,5)-trisphosphate. At the plasma membrane, BTK 
is phosphorylated by SYK and SRC kinases at Y551 in 
the kinase domain and then autophosphorylates Y223 
in its SH3 domain [14]. Phosphorylated BTK activates 
PLCG2 to further trigger a series of downstream signal-
ing cascades.

Constitutive BCR or aberrant BTK activation usu-
ally lead to B-cell malignant transformation, which has 
been implicated in the pathogenesis of various BCLs. 
Moreover, malignant B cells often hijack normal BCR/
BTK pathways to maintain their growth and survival 
[15]. BTKi was thus designed and developed success-
fully to target BCR/BTK signaling for the treatment of 
BCLs. However, since other kinases such as ITK, TEC, 
and BMX also harbour a corresponding residue in the 
ATP-binding site, a series of off-target effects, including 
bleeding, atrial fibrillation, and infection can, occur.
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First‑generation and next‑generation BTKis
Ibrutinib is a first-generation covalent irreversible 
BTKi that binds to C481 within the BTK active site 
and acts as a potent ATP competitive inhibitor, with a 
half-maximal inhibitory concentration of 0.5 nM. It can 
covalently inhibit other kinases, including ITK, TEC, 
EGFR, ErbB2, ErbB4, BMX, JAK3, and HER2 [16]. The 
off-target inhibitions of these kinases lead to a variety 
of adverse events. The most common adverse event in 
patients with CLL is infection (83%) that may be related 
to the inhibition of ITK in T cells and that of BTK in 
neutrophils and macrophages [17]. Bleeding and atrial 
fibrillation are among the frequent side effects of 
ibrutinib, the latter inhibiting BTK and TEC kinases, 
resulting in impaired platelet activation and cardiac 
PI3K-Akt pathway downregulation [18, 19]. Diarrhoea 
was reported in 52% of patients with CLL, who were 
treated with ibrutinib, due to the inhibition of EGFR 

Fig. 1  Upon antigen binding to the BCR, Src-family kinases such as LYN tyrosine kinase (LYN) and spleen tyrosine kinase (SYK) phosphorylate 
immunoreceptor tyrosine-based activation motif (ITAM) of Igα and Igβ, thereby recruiting spleen tyrosine kinase (SYK). SYK then phosphorylates 
and activates BTK. Subsequently, BTK phosphorylates phospholipase-Cg2 (PLCG2), and further initiates a series of downstream signaling pathways 
including nuclear factor kappa B (NF-kB), mitogen-activated protein kinase (MAPK), CaM and other pathways that promote cell proliferation and 
survival. In addition, BTK can also transmit various surface molecular signals such as Toll-like receptors (TLRs) that B cells communicate with the 
microenvironment; Tonic BCR: LYN also phosphorylates tyrosine residues in the cytoplasmic tail of the BCR co-receptor CD19, which countributes to 
the activation of phosphoinositol-3 kinase (PI3K) /AKT/mTOR signaling in antigen-independent manner

Fig. 2  The structure of BTK. BTK protein includes 659 amino acids 
and 5 domains (PH, TH, SH3, SH2, Kinase domain). Among them, Y223 
in the SH3 domain and Y551 in the kinase domain are two critical 
tyrosine phosphorylation sites. The covalent BTK inhibitors, including 
ibrutinib, acalabrutinib, zanubrutinib, and tirabrutinib, selectively bind 
to C481 residue in kinase domain. The non-covalent BTK inhibitors do 
not bind to C481. For example, Fenebrutinib forms hydrogen bonds 
with K430, M477, and D539 residues
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by the latter [17, 20]. To reduce these off-target effects 
and improve tolerability, next-generation BTKis, such 
as acalabrutinib, zanubrutinib, and orelabrutinib, have 
been designed and developed to covalently attach to 
BTK via C481, exhibiting greater selectivity for BTK 
and having fewer off-target effects than ibrutinib. Non-
covalent BTK inhibitors, such as pirtobrutinib, veca-
brutinib, and fenebrutinib, which do not bind C481, are 
reported to have fewer off-target toxicity, thus provid-
ing a promising effective option for patients with B-cell 
lymphoma, especially those with BTK C481 mutations. 
Fenebrutinib does not inhibit EGFR or ITK; thus, it 
may greatly alleviate diarrhoea and rash due to EGFR 
inhibition and preserve NK cell-mediated ADCC [21]. 
Adverse effects of the various BTKis with relative fre-
quencies are shown in Table 1. Recently, they have been 
well studied and have shown manageable safety profiles 
and efficacy [22]. Furthermore, the HSP90 inhibitor 
SNX-5422, which is also a BTK protein degrader, has 
been explored for BTK inhibitor-resistant CLL [23].

Effects of BTK and BTKi in innate immunity
BTK is widely expressed in innate immune cells and plays 
a pivotal role in innate immunity [24]. It is indispensable 
for the development and maturation of neutrophils [25]. 
Neutrophil count is decreased in patients with X-linked 
agammaglobulinaemia due to growth arrest [26, 27]. 

Additionally, with exposure to ibrutinib, multiple func-
tions of neutrophils, such as the production of reactive 
oxygen and engulfment of Aspergillus, are significantly 
impaired, which severely affects the innate immune 
response [28].

BTK not only induces TLR and Fc receptor signalling 
pathways but also regulates NLRP3-inflammasome activ-
ity in macrophages, monocytes, and dendritic cells (DCs) 
[29–31]. Macrophages can phagocytise and kill patho-
gens, acting as the first line of defence against fungal 
infections. Several studies have shown that exposure to 
ibrutinib and acalabrutinib can inhibit phagocytosis and 
secretion of inflammatory factors in macrophages and 
monocytes, thereby increasing susceptibility to infec-
tion [32–34]. In addition, ibrutinib suppresses the secre-
tion of CXCL13, which can attract and protect CLL cells 
from tumour-associated macrophages or nurse-like cells 
in the bone marrow of patients with CLL [35]. Impor-
tantly, myeloid-derived suppressor cells (MDSCs) with 
BTK expression can be inhibited by ibrutinib, thereby 
potentially enhancing the efficacy of cancer vaccines [36]. 
Zou et al. [37] found that zanubrutinib could downregu-
late the expression of PD-L1 in MDSCs and restore the 
immune response. DCs are potent antigen-presenting 
cells that play an important role in initiating, regulating, 
and maintaining the immune response. By triggering the 
secretion of inhibitory factors in DCs, hepatocyte growth 

Table 1  The adverse effects and relative frequencies of different BTKi in B-cell malignancies

BTK inhibitors Disease state Adverse Effects

Infection 
(grade ≥ 3)/
pneumonia

Neutropenia Diarrhea Hypertension Hemorrhagea/
Major bleeding

Atrial 
fibrillation and 
flutter

References

Ibrutinib R/R CLL Grade ≥ 3 
11%/19%

16% 55% 22% 44%/1% 3% [114–116]

TN CLL Grade ≥ 3 
48%/4%

4% 68% 22% major bleeding 
4%

6% [115–117]

R/R MCL Pneumonia 13% 17%  < 5% 5% Grade ≥ 3 6% Grade ≥ 3 7% [118]

WM Pneumonia 12% 13% 32% 16% hematuria 10% 15% [119]

Zanubrutinib B-cell malignan-
cies (33%WM, 
29%CLL/SLL, 
19%MCL)

Grade ≥ 3 
27%/21%

36% 23% 12% 55% / 4% 3% [120]

Acalabrutinib B-cell malignan-
cies

Grade ≥ 3 
(18%)/9%

12% 37% 8% 4% 4% [121]

orelabrutinib B-cell malignan-
cies

Grade ≥ 3 
(15%)/2%

29% 7% –  < 1%  < 1% [122]

Pirtobrutinib R/R B-cell malig-
nancies

7% 13% 17% –  < 5%  < 1% (unrelate to 
pirtobrutinib)

[123]

Fenebrutinib R/R B-cell malig-
nancies

Grade ≥ 3 
(17%)/4%

4% 29% – 8% – [124]

Vecabrutinib R/R B-cell malig-
nancies

– 25% – – – – [125]
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factor- and T-cell immunoglobulin and mucin protein-
3-mediated BTK activity inhibits the NF-κB pathway 
and consequently blocks the activation and maturation 
of DCs [38, 39]. Natarajan et  al. [40] had reported that 
ibrutinib-treated DCs can prompt T-cell proliferation 
and Th17 response.

BTK is a crucial regulator of the functions of NK 
cells, since BTK-deficient NK cells have impaired cyto-
toxic activity [41]. Ibrutinib significantly suppresses NK 
cell-mediated cytotoxicity and ADCC that cannot be 
reversed by lenalidomide, a potential sensitiser to anti-
CD20 therapy in MCL cell lines [42, 43]; however, acala-
brutinib, orelabrutinib, zanubrutinib, and fenebrutinib 
do not influence the NK cell effector function [44, 45], 
probably due to their weaker or even no off-target inhibi-
tion (e.g., fenebrutinib for ITK) [21, 44]. Rituximab exerts 
an antitumour effect mainly through NK cell-mediated 
ADCC. Over the past few decades, CD20 monoclonal 
antibodies have been empirically added to other thera-
pies by clinicians to improve the therapeutic efficacy in 
BCL. In ECOG E1912 trial, the combination of ibrutinib 
and rituximab versus fludarabine, cyclophosphamide, 
and rituximab significantly prolonged progression-free 
survival and overall survival and alleviated therapy tox-
icity in untreated patients with CLL/SLL [46]. However, 
a randomised single-centre study comparing ibrutinib 
plus rituximab with single-agent ibrutinib in patients 
with CLL showed that the combination therapy neither 
improved progression-free survival nor overall response 
rate (ORR) [47]. Preclinical data showed the combina-
tion of orelabrutinib and rituximab to enhance NK cell-
induced ADCC and exert a synergistic antitumour effect 
in BCL [48]. Based on these findings, acalabrutinib plus 
obinutuzumab was considered to show high and durable 
responses in treatment-naïve patients and in those with 
R/R CLL [49, 50]. A phase-3 study reported by Sharman 
et  al. [51, 52], combining ublituximab with ibrutinib, 
showed a higher ORR (83% vs 65%) than that obtained 
in the group of patients with R/R high-risk CLL receiv-
ing ibrutinib alone; similar results were found in patients 
with R/R MCL. Combination of ublituximab and ibruti-
nib reduced the lymphocytosis induced by single-agent 
ibrutinib treatment, thereby partially explaining why the 
stronger ADCC effect of ublituximab was not affected by 
ibrutinib. Natural killer T (NKT) and γδ T cells bridge 
innate and adaptive immunity. In CLL, NKT cells indi-
rectly hinder tumour cell survival and are important 
mediators of tumour surveillance and prognosis [53]. 
However, several studies have demonstrated that NKT- 
and γδ T-cell counts decrease in patients with CLL 
undergoing ibrutinib treatment [54, 55].

BTK and ITK are key regulators of Fc receptor sig-
nalling in mast cells; they have been implicated in the 

regulation of FcγRI-mediated responses, such as degran-
ulation and cytokine production in mice [56]. In human 
cells, ibrutinib inhibits these functions [57].

Recent studies have shown that ibrutinib and acalabru-
tinib can prevent sialic acid-binding immunoglobulin-
like lectin (Siglec)-8-induced eosinophil and basophil 
death [58]. Eosinophils and basophils are effector cells 
that play a crucial role in the defence against microbial 
infections. Recently, they have also been recognised as 
being related to COVID-19 [59]. Therefore, the relation-
ship between BTKis and cell types would require further 
investigation.

Effects of BTK and BTKi in adaptive immunity
In adaptive immunity, both T and B lymphocytes play 
key roles in the antitumour immune response via spe-
cifically recognising tumour antigens. Moreover, they 
can induce an immune response to infection [60]. An in-
depth understanding of the biological effects of BTKis on 
these cells will help discover better targeted drugs and 
combination strategies.

Effects on T cells
In CLL, immune functions are dysregulated due to pro-
found defects in T-cell functions; an abnormal T-cell 
compartment may be related to disease activity or pre-
vious antitumour treatment [61]. Previous studies have 
shown that ibrutinib can increase the T-cell reper-
toire diversity in CLL, indicating that ibrutinib therapy 
prompts cellular immune reconstitution [62, 63]. A com-
prehensive summary of the effects of ibrutinib on T cells 
in CLL was presented by Mhibik et al. [64]. With respect 
to the changes in T-cell numbers, including major sub-
sets, Long et  al. [65, 66] established that CD4+ and 
CD8+ T-cell numbers are remarkably increased after 
8  weeks of ibrutinib treatment, whereas the expression 
of programmed death-1 (PD-1) and cytotoxic T-lym-
phocyte-associated antigen-4 (CTLA-4) in T cells was 
reduced by ibrutinib and acalabrutinib. However, the 
cells significantly decreased in number over time dur-
ing ibrutinib and zanubrutinib treatment [35, 37, 67, 68]. 
Tirabrutinib possibly has no effect on T-cell function 
[69]. Indeed, accumulating evidence suggests that the 
decline in the number of T cells may stay in step with the 
receding tumour burden [61, 70]. Unsurprisingly, patients 
with R/R CLL have higher T-cell numbers than untreated 
patients and non-progressive patients [61]. Therefore, the 
addition of ibrutinib to PD-L1 inhibitors has a synergis-
tic effect compared to PD-L1 inhibition alone in animal 
models of lymphoma [71]. Previous trials have eluci-
dated that activity of the combination of pembrolizumab 
or nivolumab with ibrutinib is limited in patients with 
CLL, although it is promising in patients with Richter 
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transformation [72, 73]. Furthermore, BTK seems to be 
expressed in T cells, according to one report, especially 
in effector/memory T cells, and plays an important role 
in T-cell activation, indicating an on-target effect of BTKi 
on T cells [74]. In addition, ibrutinib has been shown to 
induce skewing towards Th1 cells and decrease in Th2 
and Th17 cell numbers by inhibiting ITK [75]. However, 
acalabrutinib and zanubrutinib do not change Th1/Th2 
cell numbers [37, 65], possibly because of their weak off-
target effects on ITK.

Anti-CD19 CAR-T therapy has produced durable and 
complete responses in R/R BCL. However, the com-
plete response rates are still below 50% in patients with 
CLL, which may be related to T-cell dysfunction [76]. 
Given the effects of BTKi on T cells, as mentioned above, 
emerging evidence indicates that pre-treatment with 
ibrutinib before apheresis can reverse T-cell dysfunction 
and benefit CAR-T-cell production, which may be used 
as a bridging therapy before CAR-T therapy [77]. More-
over, ibrutinib or acalabrutinib, in combination with 
CAR-T, can increase the number and function of T cells, 
promote the engraftment and expansion of CAR-T cells, 
improve the antitumour efficacy of CAR-T cells, and 
reduce cytokine release syndrome (CRS) in patients with 
CLL and MCL [3, 78–80]. Compared to CAR-T alone, its 
combination with ibrutinib improved the ORR from 56 to 
83% in patients with R/R CLL, thus demonstrating prom-
ising therapeutic potential in BCL [3, 78–80]. Acalabruti-
nib does not inhibit ITK activity, although it potentiates 
CAR-T therapy, hence suggesting that other mechanisms 
may be involved in the acalabrutinib-mediated regulation 
of microenvironment. However, ibrutinib and acalabru-
tinib are irreversible receptor tyrosine kinase inhibitors 
that may inhibit CAR-T-cell proliferation and expansion 
[81]. In contrast to irreversible BTKi, the reversible, non-
covalent BTKi vecabrutinib combined with CAR-T-cell 
treatment resulted in sustained antitumour activity and 
potentiated CAR-T-cell proliferation in a mouse JeKo-1 
lymphoma xenograft model [81]. RNA sequencing of 
activated CD19 CAR-T-cells revealed significant upregu-
lated expression of multiple genes related to PI3K/AKT 
and Th1 pathways [81]. Therefore, the synergistic effects 
of different BTKis on CAR-T cells should be explored 
further. A recent study reported that T cells from 
patients with CLL who were treated with ibrutinib when 
combined with BiAbs had more significant antitumour 
effects than T cells from those not treated with ibrutinib 
[82]. The same conclusion was further confirmed by the 
enhanced cytotoxic activity of T cells in patients treated 
with ibrutinib [83]; however, the underlying mechanisms 
remain to be fully elucidated. Another study found that 
A-319, a CD19/CD3 BiAb, in combination with ibruti-
nib, enhanced the antitumour efficacy and inhibited CRS, 

possibly by regulating macrophage-induced angiogenesis 
[84].

Effects on B cells
Hypogammaglobulinaemia occurs in most patients with 
CLL, especially those with progressive disease, with a fre-
quency varying from 20 to 70% [85–88]. Several studies 
have shown that hypogammaglobulinaemia correlates 
with the risk of infection in CLL [88, 89]. Normal B-cell 
count appears to be increased during ibrutinib treatment 
while still being aberrantly lower than that in healthy 
individuals, which may be correlated with serum BAFF 
levels [90]. BTK plays a crucial role in B-cell develop-
ment, maturation, and immunoglobulin (Ig) production. 
Although B cells and Igs are usually absent in patients 
with BTK-deficient XLA, a decrease in IgG levels is not 
observed over a short-term ibrutinib treatment [90]. IgA 
level continues to increase with the long-term adminis-
tration of ibrutinib and acalabrutinib in patients with 
CLL [90, 91]. The results suggest that BTKis can cause 
partial humoral and cellular immune reconstitution in 
CLL. The immunomodulatory effects of BTKi are sum-
marised in Table 2.

Effects of BTKis on pathogenic infections
Infections increase the morbidity and mortality of 
patients with CLL and constitute a major reason for 
treatment discontinuation [92]. The increased risk of 
infections seems to correlate with inherent immune 
defects in CLL, such as the above-mentioned abnormal 
T-cell subsets, hypogammaglobulinaemia, and previous 
anticancer treatment [92].

Although ibrutinib has exhibited excellent efficacy 
against CLL, several studies have reported increased 
number of infectious events during ibrutinib treat-
ment, especially in the first 6  months [33]. Consistent 
with these findings, Sun et al. [90] found that although 
IgG levels declined, IgA levels increased after 6 months 
with ibrutinib treatment, and this result was related 
to low infection rates. Approximately 56% of patients 
with haematologic malignancies have been reported 
to experience at least one infectious event of any grade 
during single-agent ibrutinib treatment. Grade 3–4 
infectious events accounted for 26% of all events, and 
half of them were pneumonia [93]. In another study, 
5% of patients had opportunistic infections (grade ≥ 3), 
including Aspergillus fumigatus, Pneumocystis jirovecii, 
and Mycobacterium tuberculosis infections, Aspergil-
lus causing the most common fungal infection in CLL 
[94]. However, the incidence of these fungal infec-
tions was extremely low in WM with ibrutinib treat-
ment, suggesting that features of the disease itself 
play a role, beyond the effects of ibrutinib, such as in 
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immunodeficiency [95]. In a recent study, ibrutinib and 
acalabrutinib were found to potentially inhibit the anti-
fungal effect of platelets, such as the ability to adhere 
to conidia, and thus increase susceptibility to fungal 
infection [96]. Similarly, another study demonstrated 
that ibrutinib inhibited bacteria (Staphylococcus aureus 
and Escherichia coli)-induced platelet activation via 
an FcgRIIA/aIIbb3-dependent pathway, resulting in 
impaired platelet-mediated clearance of bacteria [97]. 
Other infections, such as gastrointestinal, genitouri-
nary, and skin infections, have also been observed in 
patients with ibrutinib treatment. The rate of infection 
of grade ≥ 3 was reported in over 40% of patients with 
R/R CLL/small lymphocytic lymphoma [98], but the 
rate declined to only 10–21% in a previously untreated 
group [99–101]. The increased infection rate can be 
attributed to the impairment of innate and adaptive 

immunity by the BTKi via inhibition of BTK (on-target 
effect) and ITK (off-target effect) signalling pathways. 
The role of a BTKi in the immune cell response (mainly 
neutrophils and macrophages) to fungal infection is 
shown in Fig.  3. However, the next-generation BTKis 
acalabrutinib and spebrutinib, despite being endowed 
with greater selectivity and no off-target effect on 
ITK, can also inhibit macrophages and the neutrophil-
induced antifungal response to predispose the patient 
to infection [32]. Parallel to these results, 23% and 12% 
of infection complications (grade ≥ 3) were observed in 
two phase II studies in patients with R/R CLL treated 
with acalabrutinib and zanubrutinib, respectively [102, 
103]. Therefore, more studies should be conducted to 
elucidate the differences between different BTKis and 
infection susceptibility and to understand the related 
mechanisms.

Table 2  Immunomodulatory effects of BTKi

Cell type Impact of BTKi on cell number

Ibrutinib Acalabrutinib Zanubrutinib

Innate immune 
system

Neutrophils Decrease – – Inhibit BTK [25–28]

Macrophages Decrease Decrease – Inhibit BTK by TLR, 
FcR and NLRP3-
inflammasome

[29–31]

Monocytes/DC Decrease Decrease – Inhibit BTK by TLR, 
FcR and NLRP3-
inflammasome

[32–34, 37–40]

TAM (nurse-like 
cells)

Decrease – – Unknown [35]

MDSC Decrease – Decrease Inhibit BTK [36–39]

NK Decrease – No change Inhibit ITK [41–43]

NKT Decrease – – Unknown [53–55]

γδ T cells Decrease – – Unknown [54, 55]

Mast cells Decrease – – Inhibit BTK, ITK and 
TEC

[56, 57]

Basophils/eosino-
phils

– – – Prevent (Siglec)-8–
induced cells death 
by inhibting BTK

[58]

Adaptive immune 
system

Tcells

CD4+ Increase first then 
decrease

No change Increase first then 
decrease

The receding tumor 
burden
and ITK

[35, 37, 62, 63, 65–68]

CD8+ Increase first then 
decrease

No change Increase first then 
decrease

The receding tumor 
burden
and ITK

[35, 37, 62, 63, 65–68]

Th1 Increase No change No change Mediated by RLK [37, 65, 74, 75]

Th2 Decrease No change No change Inhibit ITK [37, 65, 74, 75]

Th17 Decrease No change No change Inhibit ITK [37, 65, 74, 75]

Tregs Decrease – Decrease Inhibit ITK [37, 65, 74, 75]

B cells

IgA production Increase Increase – Unknown [90, 91]

IgG production Decrease – – Unknown [90]
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BTKi and COVID‑19
The COVID-19 pandemic, caused by a beta-coronavi-
rus named SARS-CoV-2, has spread worldwide since its 
emergence in 2019 and is associated with high morbid-
ity and mortality. More than one-third of the patients 
with COVID-19 develop acute respiratory distress syn-
drome and require intensive care unit (ICU) admission 
[104]. Severe T-cell dysfunction, macrophage activation, 
and high levels of cytokines and chemokines have been 
observed in the bronchoalveolar lavage fluid of these 
patients with severe/critical disease [105], suggesting that 
targeting immune responses, including excessive host 
inflammation, may contribute to COVID-19 treatment.

Given the immunomodulatory effect of BTKis, clini-
cal studies on their effects in patients with BCL and 
COVID-19 are still ongoing. One study reported that an 
81-year-old patient with WM and COVID-19 required 
non-invasive ventilation in the ICU once ibrutinib was 
discontinued, and respiratory symptoms improved 

significantly after resuming ibrutinib treatment [106]. 
Moreover, acalabrutinib, zanubrutinib, and spebrutinib 
were demonstrated to mitigate the lung injury mediated 
by a cytokine storm by inhibiting the BTK-dependent 
NF-κB pathway, normalising T lymphocytes, and even 
exerting antiviral effects as ligands in COVID-19 [107, 
108]; the specific mechanism is illustrated in Fig.  4. 
Abivertinib, a third-generation BTKi, has shown excel-
lent efficacy in hospital in-patient admission for symp-
tomatic COVID-19, and related clinical research is 
currently ongoing. To the best of our knowledge, CLL 
is characterised by advanced age and immune dysfunc-
tion, making the patients more susceptible to COVID-19 
and its complications. Therefore, we aimed to determine 
whether patients with CLL who were treated with BTKi 
and diagnosed with symptomatic COVID-19 had a bet-
ter prognosis. According to a report by Mato et al. [109], 
CLL-directed therapy (mainly ibrutinib) did not affect 
the survival of patients with COVID-19, even if ibrutinib 
was often interrupted once COVID-19 was diagnosed. 
Conversely, ibrutinib exhibited a protective effect in a 
study by Scarfò et  al. [110]. Further investigations are, 
therefore, warranted to ascertain the role of BTKis and 
COVID-19 in CLL and other BCLs.

As the most powerful weapon against infection, vac-
cines have been developed against SARS-CoV-2. How-
ever, according to recent reports, the vaccine response 
seemed to be suboptimal in patients with CLL, especially 
those under BTKi treatment and/or with R/R disease 
[7, 111]. This result may be attributed to the impaired 
humoral immune response to COVID-19 vaccination 
due to BTKis and R/R patients being more immunocom-
promised than treatment-naive patients [111, 112]. In 
contrast, 75% of ibrutinib-treated patients with CLL pro-
duced a cellular response to vaccination, although they 
had a severely compromised humoral immune response 
[113]. This result was not surprising, since ibrutinib is 
capable of restoring the T-cell number and function. 
However, the severe disease burden impairs the ability 
to generate cellular immune responses in patients with 
CLL [113]. In addition, the humoral response to adju-
vant recombinant hepatitis B (HepB-CpG) vaccine was 
lower in patients on a BTKi than in treatment-naïve 
patients (3.8% vs. 28.1%); however, intriguingly, the recall 
response to recombinant zoster vaccine did not differ 
across the groups [112].

Conclusions and perspectives
BTKi exerts excellent antitumour efficacy while reshap-
ing the immune system, hence providing a rationale for 
well-designed combination therapies. More selective 
BTKis, such as acalabrutinib, orelabrutinib, and fenebru-
tinib, in combination with anti-CD20 antibodies, are well 

Fig. 3  When fungal infection happens, neutrophils was recruited 
to the sites of inflammation by cytokines and then release granule 
proteins and reactive oxygen. BTKis seem to block their release. 
Additionally, BTK plays a crucial role in neutrophils development and 
maturation, which can also be inhibited by BTKis. Macrophages also 
mediate the recruitment of neutrophils by releasing IL1β and TNFα. 
In addition, macrophages can eliminate fungus by phagocytosis. 
TLR2/4 and Dectin-1 can recognize β-glucans, chitins and mannans 
(PAMPs) of fungus and then induce downstream signaling cascades 
via BTK including NFκB and nuclear factor of activated T-cells (NFAT). 
However, BTKi not only impair the phagocytosis of macrophages, but 
also inhibit cytokine release and disrupt the signal transduction
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tolerated and yield durable responses by enhancing NK 
cell-induced ADCC. Ibrutinib can enhance the expan-
sion and degranulation ability of T cells and reduce the 
expression of PD-1 and CTLA-4. Therefore, the com-
bination of BTKi with CD19 CAR-T cells, BiAbs, or 
checkpoint blockade warrants further exploration. The 
effects of ibrutinib on the function and number of innate 
immune cells such as neutrophils, MDSCs, mast cells, 
monocytes and macrophages are mainly due to the inhi-
bition of BTK and Tec kinases, which is also validated 
by studies on acalabrutinib and zabrutinib. In addition, 
ibrutinib modulates NK cells by inhibiting ITK, whereas 
acalabrutinib and zanubrutinib have no such effect due 
to a weaker inhibition of ITK. To the best of our knowl-
edge, there is no relevant reports revealing the functional 
and mechanistic roles of these three BTKis in regulation 
of NK-T cells, γδ T cells, eosinophils and basophils. With 
regard to adaptive immune cells, ibrutinib is shown to 
alter T-cell (including CD4+, CD8+ T cells, Th2, Th17, 
Tregs) number and function primarily through ITK inhi-
bition, zabrutinib and acalabrutinib yet acalabrutinib 
have no such effect due to a weaker inhibition of ITK. In 

addition, the mechanism by which ibrutinib and acala-
brutinib increase IgA levels and ibrutinib decreases IgG 
are unclear (refer to Table 2).

The impairment of the immune system caused by 
BTKis aggravates CLL defects. An increasing number of 
infections (particularly fungal infections) and pneumo-
nia have been reported in patients treated with ibrutinib, 
especially in R/R patients. The infection rate is the high-
est in the initial months of ibrutinib therapy and declines 
with decreasing tumour burden [90]. With respect to 
COVID-19, BTKis appeared to dampen the cytokine 
storm by inhibiting the monocyte/macrophage activa-
tion induced by COVID-19 and improving the survival of 
patients with CLL [108, 110], which raises the prospect 
of BTKis being useful for other diseases related to mac-
rophage activation; long-term research in this field would 
be worth exploring. BTKis have been confirmed to abro-
gate the immune response to novel antigens, suggesting 
that a patient-tailored vaccination approach should be 
adopted in patients with CLL, according to disease sta-
tus and previous treatment, such as in the early stages 
of the disease or before BTKi administration. Further 

Fig. 4  When SARS-CoV2 enters the respiratory tract and causes an infection, alveolar macrophages may engulf viral particles or cellular debris. 
Viral single-stranded RNA (ssRNA) binds to Toll-like receptor7/8 (TLR7/8) and then activates Bruton tyrosine kinase (BTK) and myeloid differentiation 
primary response 88 (MYD88). For one thing, activation of the BTK-dependent nuclear factor kappa B (NF-κB) pathway leads to the production 
of a series of pro-inflammatory factors and chemokines, which are called cytokine storms. Among these, IL-8 can recruit more neutrophils in the 
late phase of severe coronavirus disease 2019(COVID-19 infection. BTKi can inhibit TLR-dependent NF-κB signaling pathway, thereby preventing 
cytokine production. For another, during severe COVID-19, the accumulated NLR family pyrin domain containing 3(NLRP3)inflammasome 
is phosphorylated by BTK, thus promoting its oligomerization and assembly into an inflammasome (pro-IL-1β to mature IL-1β). BTKis inhibit 
inflammasome-mediated process
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investigations on the effects of BTKis on the immune 
system and potential combination therapy should be 
explored to provide the best clinical practice guidance to 
clinicians dealing with adverse events such as infections.
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