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Abstract

Minimal residual disease (MRD) is considered the strongest relevant predictor of prognosis and an effective decision-
making factor during the treatment of hematological malignancies. Remarkable breakthroughs brought about by
new strategies, such as epigenetic therapy and chimeric antigen receptor-T (CAR-T) therapy, have led to considerably
deeper responses in patients than ever, which presents difficulties with the widely applied gold-standard techniques
of MRD monitoring. Urgent demands for novel approaches that are ultrasensitive and provide sufficient information

disease, Chimeric antigen receptor

have put a spotlight on high-throughput technologies. Recently, advances in methodology, represented by next-
generation sequencing (NGS)-based clonality assays, have proven robust and suggestive in numerous high-quality
studies and have been recommended by some international expert groups as disease-monitoring modalities. This
review demonstrates the applicability of NGS-based clonality assessment for MRD monitoring of B-cell malignancies
by summarizing the oncogenesis of neoplasms and the corresponding status of immunoglobulin (IG) rearrange-
ments. Furthermore, we focused on the performance of NGS-based assays compared with conventional approaches
and the interpretation of results, revealing directions for improvement and prospects in clinical practice.
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Introduction

The minimal residual disease (MRD) level achieved at
the end of induction/consolidation therapy is a recog-
nized important factor for risk stratification and relapse
prediction in several hematological malignancies, such
as acute lymphoblastic leukemia (ALL) [1, 2], multiple
myeloma (MM) [3, 4], mantle cell lymphoma (MCL) [5,
6], follicular lymphoma (FL) [7], diffuse large B-cell lym-
phoma (DLBCL) [8], and chronic lymphocytic leuke-
mia (CLL) [9]. Significantly better recovery and survival
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outcomes in patients with negative MRD at certain time
points were observed in multiple studies [10—12]. Never-
theless, relapses among patients with negative MRD con-
firmed by conventional methods occur, especially among
patients treated with novel strategies such as CAR-T
therapies and lack preliminary MRD data [13], indicat-
ing the importance of assessing the required depth, ideal
test sensitivity, and proper definition of MRD negativity.
MRD negativity is usually defined as less than 1 tumor
cell in 100,000 bone marrow (BM) cells (1 x 107°); how-
ever, recent evidence suggests that prolonged progres-
sion-free survival (PFS) and/or overall survival (OS)
outcomes are observed when the threshold for MRD neg-
ativity is changed to 1 x 107° [14].

The traditional, widely applied methods used for MRD
monitoring mainly include polymerase chain reaction
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(PCR)-based strategies (e.g., allele-specific oligonucle-
otide-real time quantitative PCR, ASO-RQ-PCR) and
immunophenotype-based strategies (e.g., multicolor
flow cytometry, MFC) with sensitivities of approximately
1x107° [11] and 1x10™* [15], respectively. Imaging
techniques (e.g., positron emission tomography-com-
puted tomography, PET-CT) are generally less sensitive
than MRD-based approach [16]. The advent of next-
generation flow cytometry (NGF), which outperforms
conventional MFC by the optimized combination of fluo-
rochromes and antibody reagents, further improves the
sensitivity of MRD detection to 2 x 107 [17]. Another
alternative approach developed on the basis of clonal-
ity assessment through IG V(D)] rearrangements, NGS,
emerged in parallel, exhibiting even higher sensitivity up
to 1 x 107 and providing more substantial genetic-level
information [18, 19].

Compared with other MRD monitoring methods, the
NGS-based IG clonality approach possesses substan-
tial potential for a wide range of applications due to the
distinct features of the technique, such as the compre-
hensiveness of the information gained, the ability to rec-
ognize clonal evolution, and the ability to standardize the
workflow [20-23]. Furthermore, NGS-based is recom-
mended in the NCCN Guidelines for MRD monitoring
for ALL, CLL, and MM, indicating considerable mar-
ket prospects. However, the relatively insufficient data
from clinical trials and the lack of systematic summaries
on the working principles and the scope of application
have seriously impeded the promotion of IG NGS-based
MRD monitoring. This review demonstrates the feasi-
bility and reasonability of the IG NGS approach applied
for MRD detection of B-cell malignancies from multiple
perspectives, including the distinct features of IG rear-
rangements in different neoplasms and the interpretation
of corresponding IG NGS results, a comparison of the
performance of present MRD methods and the unique
advantages of NGS-based methods, and, most impor-
tantly, a summary of the current clinical studies involving
NGS-based MRD monitoring, highlighting translational
medicine applicability and the use of high-throughput
technology in clinical practice.

The rearrangement of Ig genes in normal B cells

During the process of maturation, the immunoglobu-
lin genes in normal B cells undergo a process referred
to as V(D)J recombination to produce a unique receptor
(B-cell receptor, BCR) for combination with its specific
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antigen (Additional file 1 Fig. S1). At chromosome 14
(14q32.33), the IGHV, IGHD, and IGH] segments of
the immunoglobulin heavy chain (IGH) gene are rear-
ranged in an ordered fashion, while at chromosome 2
(2p11.2), IGKV and IGK]J or IGLV and IGL] (chromo-
some 22:22q11) undergo the same phenomenon but at a
later time [24]. The whole process is completed through
by precisely controlled enzymatic machinery mediated
by the interaction of rag (coded by recombination acti-
vating gene, RAG) with recombination signal sequence
(RSS) motifs located near the V(D)] segments and the
subsequent splice site [25]. During the pro-B-cell stage, D
to JH recombination precedes VH to DJH with deletion
of the intervening gene segments, ultimately producing
an intact and unique variable (V) region. The rearrange-
ment events that occur at the light chain locus are much
more sophisticated, involving both deletions and inver-
sions due to the participation of IGKV(D) clusters, which
are located upstream of IGKV clusters and have similar
sequences and opposite-orientation RSSs [26—28].

Based on previous studies [29], the principles of V(D)
] rearrangements, also designated allelic exclusion, were
analyzed and summarized (Fig. 1). The rules are imple-
mented as follows: (1) the IGH gene segments must
rearrange to produce a functional V region that can suc-
cessfully pass the in-frame selection. (2) The nonproduc-
tive IGH rearrangements are inactivated in parallel with
the initiation of the second rearrangement at another
allele. (3) Rearrangements of IGK gene segments occur
after the appropriate IGH rearrangement, while failed
IGH rearrangements occurring in both alleles result
in apoptosis. (4) A second rearrangement can occur in
either allele when the first IGK fails to produce a func-
tional result. (5) The nonproductive IGK rearrange-
ments are inactivated by the deletion of intervening
DNA sequences through either Kde-IGK] or intron-
Kde recombination [30]. (6) Rearrangements of IGL
gene segments occur after failed IGK rearrangements in
both alleles, while productive IGK recombination tends
to leave the IGL gene in its germline configuration [31,
32]. The successful expression of IgH marks the transi-
tion from pro-B cells to pre-B cells, in which IgH com-
bines with a surrogate light chain to form a pre-BCR,
activating in-frame selection events and light chain rear-
rangements. Following somatic hypermutation (SHM)
and class-switch recombination (CSR) in the germinal
center (GC), immature B cells from the BM are con-
verted into mature B cells equipped with antigen specific,

(See figure on next page.)

Fig. 1 Summary of the allelic exclusion theory and the normal B cell differentiation process. A Heavy chain rearrangement precedes light chain
rearrangement, and recombination of the IGK segment precedes IGL. SHM and CSR occur in GC after successful Ig rearrangement to produce
mature BCR. B Maturation of B cells from hematopoietic stem cells to mature B cells with class-switched BCR (IgA/IgG) through Ig rearrangement

and BCR signaling
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high-affinity, and unique BCRs [33] and then differentiate
into either plasma cells (PCs) or memory B cells [34, 35]
(Fig. 1).

Targets utilized for MRD monitoring by NGS

The high diversity of the BCR repertoire results from
nearly infinite combinations of V(D)] gene segments. The
123-129 VH gene segments, of which 38-46 segments
are functional and 36 are considered pseudogenes, can
be approximately grouped into 7 families (VH1-VH7)
[36]. A total of 27 D gene segments and 9 JH segments
comprise 23 and 6 functional components, respectively
[37]. The possible VH/D/JH combinations and SHM that
occur in hotspots endow the complementarity determin-
ing regions 3 (CDR3) of BCRs with the ability to interact
with distinct antigen epitopes and serve as a fingerprint
when recognizing and tracking the specific B-cell [12].
Similar processes occur at the IGK or IGL locus, within
which 34-38 and 29-33 functional segments can be
selected from a total of 76 Vk and 73-74 VA genes,
respectively [38]. Recombination in the constant region
of the IG gene initiates during CSR in the GC environ-
ment [39]. By simply deleting the intervening DNA
sequence between the S region of Cp and another con-
stant component, the IgM isotype of BCR is converted
into a mature IgA or IgG isotype [39].

During adaptive immune responses, B cells react to
antigenic stimulation and rapidly proliferate, forming
clones with the same V(D)J pattern and possible intra-
clonal diversity at the nucleotide level attributed to SHM.
Similarly, after malignant transformation at a certain
time point during B cell differentiation triggered by either
activation of oncogenes or inactivation of tumor suppres-
sor genes, B-lineage cancer cells carrying the same com-
plete V(D)] or incomplete DJ rearrangement unlimitedly
multiply with possible subclone characteristics caused by
ongoing SHM or ongoing V(D)] recombination, respec-
tively [40-42]. Given that the rearranged IG gene is
unique and the quantification of these specific sequences
will dramatically increase to a level far beyond the back-
ground of the normal IG gene repertoire when malignant
cells proliferate, it is convincing and feasible to consider
the IG V(D)] rearrangement pattern as an alternative
for both clonality assessment of diagnosis and targets of
MRD monitoring.

The oncogenesis of B-lineage malignancies

and the corresponding status of IG rearrangements
The deletion—-recombination reactions of V(D)] rear-
rangement, SHM, and CSR require a double-strand break
(DSB) at a specific locus, introducing potential aberrant
translocation events that can serve as distinguishing
signs in fluorescence in situ hybridization or 1G-based
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clonality assessment [43-46]. Characteristics associ-
ated with the abnormal IG repertoire, such as biased V-]
usage [40, 47], stereotyped CDR3 [48-52], the tendency
to mutate frequently [18, 45, 53] or retain germline con-
figuration [40, 54, 55], ongoing SHM [56-58] or lack of
intraclonal diversification [46], were further confirmed in
many hematology studies based on the sequencing of IG
genes. Detailed information is exhibited in Table 1 and
Fig. 2 to demonstrate the interpretation of sequence anal-
ysis of different B-linage malignancies.

|G gene rearrangement pattern in ALL

ALL is considered to originate from pre-B cells, which are
aberrantly blocked at the transition to immature B cells.
This mechanism explains the unmutated or low-mutated
status due to lack of SHM, the high frequency of unpro-
ductive IGH rearrangements due to continuously active
recombinase enzyme, and the initiation of IGK/IGL rear-
rangements that go against allelic exclusion rules due
to improper in-frame selection [40, 41, 47, 59]. Clonal
evolution can't be ignored in ALL and likely occurs by
continuing rearrangement processes (successive VH to
DJH or secondary rearrangements) [40, 41] and selection
pressure mediated by treatments [60]. Measurements of
the IG gene repertoire exhibited biased VH usage toward
VH3 and VHI families, most frequently involving the
VH6-1, VH1-2, VH3-11, VH3-13, and VH3-15 segments.
D2 and D3 families were overrepresented, in which the
D2-21 segment was the most frequent. JH4 and JH6 were
more frequently selected in JH families. In the Vk fam-
ily, Vk1 and Vk2 are preferentially used [40, 47]. Unfor-
tunately, there is no obvious evidence indicating an
association between IG gene characteristics and progno-
sis, but this conclusion is not yet validated due to the lack
of large-scale studies.

|G gene rearrangement pattern in MCL

The origins of conventional MCL (cMCL) cells and
nonnodal MCL (nnMCL) cells are believed to be
naive mature B cells and memory-like B cells, respec-
tively [44, 55]. The cMCL subtype generally exhibits an
unmutated or minimally mutated CDR3 region [54].
The core mechanism in the malignant transformation
of MCL has been demonstrated to be a translocation
involving chromosomes 11 and 14 (t(11;14)(q13,32),
CCND1/IGH), leading to the overexpression of CCND1
protein [5, 61, 62], while other cases may be driven by
a CCND2 or CCND3 translocation with IGK or IGL
[63]. Aberrant translocation events in MCL can occur
in V(D)J recombination, SHM, or CSR based on the
DSBs formed during these processes [44]. Similarly, a
biased VH-D-JH repertoire has been observed, marked
by the preferential use of the VH3, VH4, D3, D6, JH4,
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Fig. 2 Schematic representation of the oncogenesis of B-lineage malignancies. The t(14;18)(q32;g21) rearrangement caused by aberrant D-JH
recombination during the pro-B-cell stage plus the acquisition of N-gly sites during the SHM period ultimately leads to FL. The blockade at the
pre-B-cell stage to the immature B-cell stage in parallel with the ongoing recombination events promotes the development of ALL. MCL originates
from immature B cells with t(11;14)(q13;932). GCB-DLBCL is transformed from B cells under continuing antigenic pressures in GC characterized

by ongoing SHM or is transformed from FL, while the non-GCB subtype originates from plasma cells or memory-like B cells that have completed
the GC reaction. MM is caused by an aberrant translocation involving the IGH locus (14932), which occurs during V(D)J recombination, SHM or
CSR. HL derives from surviving cells that escape from apoptosis caused by unfavorable mutations by the activation of oncogenes. N-gly sites,

and JH6 families. In the VH repertoire, VH3-21, VH3-
23, VH4-34, VH1-8, and VH4-59 were most frequently
used, while in the D repertoire, D3-22 and D3-3 were
overrepresented. The VA1, VA2, VA3, and V«3 families
account for the highest proportion of the VA and Vk
repertoires, in which the VA2-14 and Vk3-20 were the
most frequent components. Stereotyped CDR3 regions
of both heavy chain (HCDR3) and light chain (LCDR3)
were addressed in MCL. The phenomenon of the nar-
rowing of the VH repertoire and the occurrence quasi-
identical receptors due to the involvement of a limited
set of antigens in the development of lymphomas is
referred to as “stereotyped” [51]. Several stereotyped
forms of V(D)] combinations have been discovered and
described, including VH4-34/D2-2/JH6, VH3-21/D3-9/

JH6, VH3-21/D6-6/JH6+ VA3-19/JA2, VA3-19/JA2-1,
VA2-14/JA2-1, and Vk3-10/Jx2-1 [51, 54, 55]. These fea-
tures endow the MCL group with good suitability for
1G-based clonality assessment.

IG gene rearrangement pattern in CLL

Opinions on the origin of CLL cells are widely divided
due to the existence of unmutated (U-CLL) and mutated
(M-CLL) subtypes, classified by the level of SHM with
a cutoff value of 2% [48, 49]. Currently accepted theo-
ries include transformation from immature B cells and
B cells at an early stage of SHM, possibly resulting in
U-CLL with more aggressive behavior, B cells exhibiting
SHM in M-CLL with more benign features, or transfor-
mation from marginal zone B cells in both subtypes [64,
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65]. SHM in CLL is concentrated in hotspots with lim-
ited intraclonal diversification, indicating the absence of
an ongoing SHM process [52]. The VH1, VH3, and VH4
gene families were more preferentially used, in which
the VH1-69, VH4-34, VH3-23, VH3-30, and VH1-2 seg-
ments were observed to be the most frequent [51]. The
most striking characteristic of CLL is the high proportion
of clones with stereotyped BCRs represented by VH1-69/
D3-16/JH3+ VkA27, VH1-69/D3-3/JH6+ VA3-9, VH3-
21/D3-3/JH6+VA2-14, VH3-21+4+VA3-21, VH4-39/
D6-13/JH5 + Vk(D)1-39, etc. BCRs involved with VH1-
69 possess longer and unmutated CDR3, while BCRs
involved in VH3-21 possess a shorter and less mutated
CDR3 [48-52]. CLL cases with stereotyped and nonste-
reotyped BCRs may undergo different oncogenetic tra-
jectories. Most major subsets of stereotyped BCR in CLL
were unmutated with high conservation across the entire
HCDR3. Moreover, studies have confirmed the coexist-
ence of satellite subsets, defined by a small quantity and
high similarity with consistent clinical profiles with major
subsets [66]. Measurements of the IG gene repertoire of
CLL have been demonstrated to have a certain value in
diagnosis and prognosis prediction.

IG gene rearrangement pattern in DLBCL

DLBCL, not otherwise specified (DLBCL, NOS), is
classified into two distinct groups, the germinal center
B-cell-like (GCB) subtype and non-GCB subtype, charac-
terized by different cells-of-origin (COO) and responses
to chemotherapies or targeted therapies [67]. Both sub-
types of DLBCL display established features of canonical
SHM, while GCB cases exhibit ongoing SHM associated
with poorer survival, and non-GCB were considered
mutated [48, 53, 56, 68]. High rates of SHM in DLBCL
were verified in both the HCDR3 region and the LCDR3
region of BCR, with a worse prognosis in the former case
and a better prognosis in the latter case [56]. SHM can
also occur in the framework regions (FR), requiring com-
plexity in the design of sequencing primers [69]. Moreo-
ver, Kikuchi et al. demonstrated that the overexpression
of BACH2 was critical for ongoing SHM of HCDR3, and
this phenomenon occurred more frequently in the GCB
subtype, which further helped to decipher the molecular
mechanism and its link to clinical behaviors [70]. Assess-
ment of the IG gene repertoire showed more frequent
use of VH1 and VH3, followed by VH4 and VH2. VH1-2,
VH4-34, VH3-23, VH4-39, VH1-69, VH5-51, and VH3-
21 segments were preferentially selected in DLBCL with
a biased distribution in two COO subtypes, highlighted
by the clustered highly mutated VH4-34 segments in
the non-GCB subtype and VH3-21 segments more fre-
quently used in unmutated cases [53, 69]. The D2, D3,
JH4, and JH6 gene families were overrepresented, and
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D3-22 and D3-10 outnumbered the other segments.
The D2 gene family and D2-2 segment were more fre-
quently used in incomplete D-JH rearrangements. Evi-
dence supports a stereotyped HCDR3 region in DLBCL,
including VH1-69/D3-10/JH6, VH1-69/D3-3/JH6, and
VH4-34/D3-22/JH2, summarized by Sebastian et al. [53,
56]. Clonally related relapses resulting from clonal evo-
lution in DLBCL can be intricate, operating in either
early-divergent mode or late-divergent mode, both
proven clonally related as evidenced by the same V(D)
J rearrangement. The early-divergent mode was named
according to the behavior of the preexisting, chemore-
sistant subclones diverging early and developing in par-
allel with the major clone, characterized by more SHM
sites in the relapse sample than in the diagnostic sample.
The late-divergent mode is considered to occur at a later
period of oncogenesis with subclones derived directly
from the major clone that have fewer differences in SHM
sites and number. However, there was no significant cor-
relation between DLBCL subtypes and evolution-relapse
mode. Several studies have also noted the selection pres-
sure between remission and relapse, such as that result-
ing from treatments and antigens [68, 71-73]. Other IG
repertoire-associated factors influencing the prognosis
included monoclonality, the length of the HCDR3, and
the abnormal ratio of functional IGK/IGL rearrange-
ments [56, 69, 74, 75].

|G gene rearrangement pattern in FL

FL cells originate from GC B cells, marked by t(14;18)
(g32;q21) (IGH/BCL2), resulting in the overexpression
of BCL2 [76]. Recently, several studies have stressed the
concept of in situ FL, an intermediate stage between FL
and normal t(14;18) B cells, as an origin of FL [45]. The
acquisition of asparagine-X-serine/threonine (N-gly)
sites in the IGHV region has been recognized as one of
the early initiating events of FL pathogenesis and a stable,
conserved, and essential hallmark for the survival, prolif-
eration, and dissemination of FL cells [45, 77]. The CDR3
of either IGH or IGL in FL cells is highly mutated, with
significant intraclonal diversity caused by continuous
exposure to GC [45, 57, 76, 78, 79]. Similar to the other
B-lineage malignancies mentioned above, the VH3, VH4,
and VH1 gene families were more frequently used in FL,
in which VH1-18, VH3-48, VH3-15, VH3-34, VH3-23,
VH3-30, and VH3-21 were preferentially selected. D3-10,
D3-22, and D3-3 accounted for most of the D2 and D3
gene families used in FL. JH4 was the most frequent JH
component [58, 69, 80]. Interestingly, FL. can transform
into other more aggressive malignancies, usually DLBCL.
The transformed FL exhibits a clonal relationship with
the original FL and changes through histological trans-
formation, involving continuous BCR signaling, possibly
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associated with the overrepresented VH3 gene family,
especially the VH3-48 segment [80]. Additionally, FL-
transformed DLBCL tends to occur through a divergent
pattern from the common progenitor rather than via
direct linear evolution [73].

IG gene rearrangement pattern in MM

Compared with other B-lineage lymphomas, MM pos-
sesses more stable properties at the molecular level due
to its origin from plasma cells, which have completed the
GC reaction and consequently exhibit more mature fea-
tures. CDR3 regions of either heavy chain or light chain
in MM cells are highly mutated without intraclonal vari-
ation, while most MM secretes class-switched Igs, indi-
cating the initiation of pathogenesis at the relatively late
phase of the GC reaction [46, 79, 81, 82]. A higher level
of SHM was associated with better OS outcomes [18].
The ontogeny of MM was also demonstrated to possibly
result from translocation events involving the IGH gene
(14q32) caused by aberrant V(D)] recombination, CSR,
or SHM [43]. The IG repertoire, the relationship between
Ig secretion, and the corresponding V(D)] recombina-
tion patterns in MM resemble normal cells [18, 83]. The
VH3, VH4, and VH1 gene families are more frequently
used, and VH3-30, VH3-23, VH3-9, VH4-31, VH1-69,
and VH5-51 are the most frequent. Interestingly, the
autoreactivity-associated component, the VH4-34 seg-
ment, is completely excluded from the IG repertoire of
MM, indicating an intrinsic anti-autoimmunity quality.
The D3-10 segment in the overrepresented D2 and D3
families occurs most frequently. JH4 and JH6 are again
preferentially used in MM [79, 83]. In the IGK/IGL rep-
ertoire, Vk1, VK2, Vk3, Jx4, Jx2, JA2, and JA3 are more
frequently chosen, while no clear preference for VA seg-
ments was observed. Vk2-30 and Vk1(D)-33 account
for a sizeable portion of the Vk repertoire [46, 83]. More
IGK rearrangements, including Kde-mediated deletions,
and less SHM in the IGKV regions, were demonstrated
in A-restricted cases than in k-restricted cases, consist-
ent with normal allelic exclusion [14, 84]. Clonal evolu-
tion in MM is rare, indicated by the stability of dominant
sequences identified at diagnosis over time [18]. MRD
monitoring of MM through IGH-based clonality assess-
ment is feasible due to disease progression without vari-
ation at the molecular level, and the sensitivity could be
further improved by the addition of IGK panels [83].

MRD monitoring through clonality assessment

by NGS

Because almost all B-lineage malignancies have distinct
and stable V(D)] recombination patterns, the BIOMED-2
protocol was first designed by a European BIOMED-2
collaborative study as a PCR-based technology for
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routine clonality diagnostics [85]. This classical method
relies on multiplex PCR with 97 standardized primers
designed for amplification of different Ig/TCR gene seg-
ments, and the PCR products can be analyzed for clonal-
ity assessment by heteroduplex analysis or GeneScanning
[29]. High-throughput sequencing techniques have been
rapidly developed and upgraded. The Lymphotrack
assay was established by combining the basic strategy of
BIOMED-2 and NGS technology. After input, the com-
patible FASTQ files can be processed into fully analyzed
data by the corresponding application Lymphotrack
DataAnalysis [86]. Productive rearrangements were fur-
ther analyzed for parse, re-organization, and exportation
using algorithms. In this process, a clonotype was estab-
lished in the tumor sample using locus-specific primer
sets for IGH-V, -D, and -] rearrangements and the Miseq
[lumina platform. The output form of results was then
further analyzed based on the international ImMunoGe-
neTics (IMGT) information system to identify the exact
V-D-] sequence and the corresponding frequency. Infor-
mation was ultimately reported as Ig gene repertoires,
VH CDR3 length, exact amino acid sequence and fre-
quency of SHM. Generally, a clonotype with a frequency
of higher than 5% of all rearranged V(D)] sequences were
identified as a malignant clone. The malignant clone with
the highest frequency in the baseline sample was named
the “index” clone, and was tracked in the follow-up sam-
ples for the MRD measurement. Standard and automated
data processing can be performed easily, locally and
securely, making it feasible in most laboratories. In addi-
tion, a similar product, ClonoSeq from Adaptive Biotech-
nologies [87], has already been approved by the FDA for
MRD tracking in ALL and MM.

Considering the abundance of information produced
by the NGS IG method, it is plausible and practical to
apply this strategy for clonality assessment in diagnosis
at baseline and MRD monitoring follow-up assessments.

Importance of MRD monitoring in clinical practice

The variance of clinical remission (CR) among differ-
ent regimens and diseases has revealed the limitation
of the current definition by clinical manifestation and
imaging tests, raising a claim for a more stringent ver-
sion. MRD is generally acknowledged as one of the most
powerful approaches for the prediction of relapse and
prognosis. MRD-positive patients have far less favora-
ble event-free survival outcomes than MRD-negative
patients [10-12, 15, 22, 88-91]. The prognostic value of
MRD among patients undergoing specific treatments is
mainly reflected in the dynamic risk-stratification ability.
Moreover, by serially monitoring the clearance of tumor
cells in the BM or PB during and after chemotherapy or
novel immunotherapies, the modulation of treatment
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duration and intensity can be prompted and executed
by either early termination/intensification of treatment
in patients who remain MRD-positive or after interrup-
tion of continuous treatment in patients who become
MRD-negative. Measurement of MRD at the end of
therapy also assisted in identifying cured or optimally
treated patients, in turn providing an evaluation of spe-
cific therapeutic effects [61, 92]. Methods for the effective
application and integration of MRD monitoring in clini-
cal practice for relapse prediction were established on
the essential premise that (1) molecular relapse precedes
clinical relapse by a time interval long enough for inter-
vention and (2) instant intervention initiated during the
lead time influences the outcome and results in a better
prognosis [61].

However, MRD monitoring is not widely available in
lymphoma care despite the benefits shown in therapeu-
tic outcomes and scientific research. Several obstacles
have impeded the improvement of MRD and the ability
to obtain feedback from real experiences, including the
lack of incorporation of MRD monitoring in prospective
trials involving novel treatment, the relatively high cost of
high-throughput sequencing per sample, the long delays
between technical evolution and the ultimate outcome
(e.g., OS), the labor and special care required in the trial
and the complex statistics required for analysis [61]. Fur-
thermore, the conclusion inferred from MRD monitoring
can be obscure due to the nonuniform standard of MRD
negativity across laboratories. MRD negativity is typically
defined as the absence of clonal malignant cells in BM
aspirates with a minimum sensitivity of 1-cell in> 10°
nucleated cells [10, 22]. However, recent studies provided
evidence for more OS and PFS benefits and better relapse
prediction capabilities when a threshold of 1x 107 is
used [14, 93, 94]. A more sensitive, repeatable, and mul-
tifunctional method for MRD monitoring is urgently
needed.

The process of IG NGS-based clonality assessment in MRD
monitoring

The complete process of 1G-based diagnosis and MRD
monitoring by NGS in lymphoma is shown in Fig. 3 B.
After the initial diagnosis of B-lineage malignancy was
confirmed by clinical symptoms, imaging manifestations,
and histopathological examinations, the BM aspirate
samples were preserved and subjected to high-through-
put sequencing. Index clones were identified in these
samples by the following criteria: (1) the proportion of
index clones needs to be at least 3% of all sequences at
the specific locus, (2) the frequency of cells that carry
index clones needs to be at least 0.2% of all nucleated
cells [5], and (3) other criteria in kits designed by dif-
ferent companies [14]. By using the algorithm of exact
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match and up to 2-bp mismatches, the disease clones in
follow-up samples were compared with the initial index
clones in diagnostic samples, based on which the pres-
ence or absence of MRD was identified, and the quantity
of MRD was calculated [18]. By analyzing the IG reper-
toire in the sequenced sample, including V-] usage and
SHM levels, the disease of a specific patient can be fur-
ther classified at a molecular level and ranked in order
of the degree of risk. The index clone was tracked in a
series of BM aspirations during and after treatment for
the dynamic evaluation of therapeutic effects and prog-
nostication, including relapse prediction. When tracking
multiple clonotype sequences, it is important to consider
the type of gene rearrangement being tracked. A check
of the tracking sequence in a negative control is also
necessary to ensure that it is not a part of the polyclonal
background, which could lead to a false-positive result.
It should also be noted that the adequacy and tumor
infiltration level of the specimen required for the iden-
tification of an index clone at baseline is relatively high
for sufficient DNA input to reach a sensitivity of at least
1 x 107°. The functionality of MRD monitoring based on
this assay can be influenced by several technical limita-
tions of sampling and sequencing, including the amount
of input DNA, the cellularity of a BM sample, and possi-
ble significant overestimation of residual tumor cells due
to the calculations (detectable index clonal sequences/
total IGH/IGK sequencing reads) [5, 18].

The strategy designed to amplify specific regions in the
IGH/IGK gene is based on a set of consensus primers
targeted at the conserved FR region (Fig. 3A). For IGH
sequencing, the forward primers target FR 1 to 3 (FR1,
FR2, and FR3) in the VH region, while several consensus
reverse primers target the JH region. For IGK sequenc-
ing, primers target the VK-JK, VK-Kde, and INTR-Kde
gene rearrangements. IGL sequencing is rarely applied
[14, 19]. Targeted sequences are amplified and purified,
based on which the DNA library is established and opti-
mized by intense quality control. The output of sequenc-
ing and alignment, usually formatted as a FASTQ file, is
analyzed and sorted to identify index clones by predeter-
mined criteria.

For some cases, the IGHV mutational status plays an
important role in prognosis prediction, such as in CLL.
The matched bioinformatics software Lymphotrack IGH
FR1 Assay Master Mixes can be used to meet the needs
for evaluating the SHM rate of the IGHV region. The
IGHV mutational status will be determined based on the
percent of mismatch between the clonal amplicons and
the corresponding germline reference genes, the predic-
tion of in-frame or out-of-frame translation, the possi-
bility of a premature codon introduced by the mutation,
and the percentage of VH gene coverage in the region
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the candidate IGHV genes in order of identity. The best
match is preferentially chosen for subsequent analy-
ses. The result will be considered dubious and excluded
when a stop codon or frameshift mutation is produced.
Although the bias resulting from SHM is hard to avoid,
the comparison step ensures the validity of the interpre-
tation as much as possible.

The information presented in the analysis report
is as follows: (1) a summary of a sorted list of unique
sequences, including the best-matched V-] family
recombination event, length of the read, the actual and
cumulative rate of the unique read in total reads, cov-
erage of the identified V-gene by the unique read, the
mutation rate to partial V gene and the prediction of in-
frame mutation and stop codon; (2) graphs of V-] usage/
sequence frequency and (3) a FASTA file of the unique
sequences sorted by count.

Comparison of the performance of techniques applied

in clonality assessments and MRD monitoring

The advantages and drawbacks of the methods for clonal-
ity assessment are presented in Table 2 in detail [5, 29, 60,
72,78, 93, 95-100].

The gold standard for clonality assessment is the
BIOMED-2 multiplex PCR-based protocol for IG/TCR
targets, but it is not suitable for MRD monitoring [101].
The workflow, experimental conditions, and analysis
methods were standardized in the BIOMED-2 protocols.
Monoclonality, which represents malignant proliferation,
is displayed as 1-2 peaks in the background, while poly-
clonality, which indicates physiological immune reac-
tions, has a Gaussian distribution.

ASO-RQ-PCR can be applied for diagnosis and MRD
monitoring of lymphoma with a sensitivity of 107~ 107°.
In this approach, IG regions are targeted and amplified
by consensus primers and then sequenced to design
more precise, patient-specific primers and probes [95].
ASO-RQ-PCR provides quantitative results recorded by
fluorescence signals, making it suitable for MRD meas-
urement. Given that the design of patient-specific prim-
ers and probes is complex, labor-intensive, and cannot be
standardized, ASO-RQ-PCR is difficult to apply widely in
multiple centers.

Compared with the BIOMED-2 protocol and ASO-RQ-
PCR method, the IG-based NGS approach performed
better on many levels, such as higher sensitivity, the abil-
ity to obtain more information about the IG repertoire,
and the ability to track clonal evolution; additionally, the
workflow is well-standardized (Table 2). Since the sensi-
tivity of the BIOMED-2 method was 0.1%, which partially
hampered its utilization for MRD tracking, the compari-
son between BIOMED-2 and NGS mostly focused on the
concordance of the types of clonality or the sequences
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detected. The EuroClonality-NGS working group tested
the suitability of NGS-based IG rearrangement detec-
tion in frozen and formalin-fixed paraffin-embedded
specimens (low-quality DNA) using the ARResT/Inter-
rogate platform for data analysis. Accurate clonotypes in
all healthy samples were successfully identified by NGS,
while dominant IG gene rearrangements identified by
NGS were identical to those identified by BIOMED-2.
The NGS-based method also identified 22% more clonal
rearrangements that were not detected by the conven-
tional method, possibly due to the new design of shorter
amplicons [101]. A multicenter study compared these
two technologies based on 209 specimens of reactive and
malignant lymphoproliferation and validated the high
interlaboratory concordance (99%) of NGS-IG detec-
tion and its high concordance (98%) with the BIOMED-2
method for the exact sequences and clonality. An even
higher sensitivity was obtained with the NGS-IG method
than the gold standard, inferred from a higher detection
rate in diagnosed lymphoma samples. Satisfactory resolu-
tion of reactive and malignant samples was also achieved
by NGS-based clonality tests [102]. Similarly, several
other studies established for testing the NGS-based IG
clonality method in routine clinical practice unveiled
superior performance of NGS, marked by a clonality
detection rate of 97% and high concordance (96%) with
capillary electrophoresis assays at diagnosis [103] and a
much higher positive rate obtained by NGS compared
with fragment analysis in follow-up samples for MRD
detection [84]. Less efficient identification of clonal IG
rearrangements by NGS in HL compared with NHL was
observed in a study with a small sample size; however,
the NGS IG method performed better than BIOMED-2
[104]. Overall, the NGS-based method is superior to
BIOMED-2 for clonality detection.

FC-based methods, including MFC and NGE are
considered the gold standard of MRD measurement
in clinical practice with a wide applicable range, short
turnaround time, reliable results, and relatively low cost.
Malignant cells in samples are identified and quantified
based on aberrant immunophenotypes labeled with dif-
ferent colored antibody signals. The sensitivity reaches
1x10™* in MFC and 2x107° in NGF [15, 20, 21].
However, FC-based approaches are limited by techni-
cal defects and expertise requirements [105]. First, the
analysis of FC results requires a high level of expertise to
avoid possible subjective interpretation, while variations
in instrument settings and reagents (antibodies and fluo-
rescein) are unavoidable. Second, FC is complicated by
the change or loss of the surface markers selected during
monitoring resulting from clonal evolution and targeted
therapies such as CAR-T cells. Low tumor burdens, sam-
ple hypocellularity, and diseases lacking specific markers,
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such as DLBCL, also limit the application of FC. The
relatively low sensitivity of MFC limits MRD detection
after intensive treatments (false-negative results), while
false-positive results may arise after the induction of
immune reconstruction. Third, the fast turnaround time
was paralleled with the requirement of fresh instead of
cryopreserved samples, which are not available for ret-
rospective studies. Last, FC results lack stringent quality
control. These limitations were partially overcome by the
advent of NGF, in which the sensitivity was significantly
improved, the workflow was standardized following the
EuroFlow guidelines, and the results were controlled
based on the detection of hemodilution [17, 88].

Another PCR-based method, the droplet digital PCR
(ddPCR) assay, can also be applied for MRD monitoring.
ddPCR was proven to be an efficient method for MRD
monitoring in malignancies with distinct translocation/
fusion transcripts/recurrently mutated gene markers,
such as BCL/IGH rearrangements in FL [106], BCR-ABL
fusion transcript in chronic myeloid leukemia [107, 108],
MYD88 L265 mutation in Waldenstrom macroglobuline-
mia[109] and NPM1 mutation [110] or IDH1/2 mutation
[111] in AML. ddPCR solves some of the disadvantages
of quantitative PCR, including establishing a standard
curve and positive cases with unquantifiable results while
maintaining a sensitivity of 1 x 10™°. Furthermore, sev-
eral studies demonstrated that ddPCR had a good con-
cordance with RT-qPCR, but its ability to quantify the
level of markers was more precise [108, 112]. Based on
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water—oil emulsion technology, ddPCR fractionates the
sample into nanoliter-sized 20,000 droplets and ampli-
fies the template molecules in each droplet [113]. The
high partitioning endows ddPCR with highly sensitive
and reliable absolute quantification capability [107, 114].
However, as an approach developed to quantify specific
leukemic aberrations, ddPCR is still strictly dependent on
qualitative nested PCR as the marker screening tool. The
prevalence of the specific hallmarks (absent in 35-40%
of patients) significantly limits the utilization of ddPCR
in most hematological diseases, making this PCR-based
method suitable for only a minority of patients [114, 115].
High mutation rates and translocations or mutations
unrelated to tumors can also influence the final inter-
pretation of results. The ddPCR method can be time-
saving, cheaper, and easier to perform when compared
with NGS-based methods, but it only detects genetic
alterations that have already been identified, while NGS
provides more comprehensive information [116]. Addi-
tionally, the primers used for ddPCR need to be specifi-
cally designed for patients based on sequencing results.
The comparison of FC-based, NGS-based, and PCR-
based approaches is shown in Table 3 [18, 20, 100, 106,
109, 115, 117-122]. The unique advantages of NGS-
based techniques stand out from the other approaches
to MRD monitoring. The NGS method exhibited supe-
rior detection for cases with lower tumor burdens,
minor subclones, and a high level of SHM at diagnosis.
MRD can be better defined by tracking the behavior of

Table 3 Comparison between flow cytometry and IGH/IGK rearrangements identified by NGS in MRD monitoring

Items Multiparameter Flow Cytometry

IG NGS-based Clonality Assessment

Droplet Digital PCR

Information offered Proportion of cells, morphological

features, immunophenotypic charac-

Genetic alterations, immune repertoire

Genetic alteration, breakpoints involved
in specific translocations

teristics

Turn-around time 24-48 h 5-7 days 24-48 h

Sample type Bone marrow aspirates (more fre- Bone marrow aspirates or peripheral Bone marrow aspirates or peripheral
quently) or peripheral blood blood blood

Sample quality Fresh samples acquired within 24-28 h

or DMSO-preserved samples

Relatively large (1 x 10°~1.5 x 10°
mononuclear cells) [118]

Sample quantity

Application range >95% of patients [111,119, 120]

1% 107%MFC), 2 x 10°%(NGF) [16, 18]
Simplified steps

Sensitivity
Operation procedure

Analysis and Interpretation  Subjective, a high level of expertise is

required

Clonality assessment Clonal heterogeneity at the genetic
level cannot be detected, but cell

heterogeneity can be identified

Cost Relatively cheap

Fresh samples or preserved samples
(FFPE, cryo-preserved samples, etc.)

Small, but high DNA input is required
for the identification of index clones
(DNA input of 40-200 ng) [117]

Approximately 100% of patients [19,
24,117]

1x10°019]
Relatively complicated steps

Objective, the analysis is automatically
completed by the software

Subclones and clonal evolution at the
genetic level can be identified

Expensive

Fresh samples or preserved samples
(FFPE, cryo-preserved samples etc.)

Small, suitable for cases with low tumor
burden or positive but not quantifi-
able gPCR results (DNA input of at least
150 ng) [119]

minority of patients, dependent on the
target selected [112, 113]

1x107°[110]
Relatively complicated steps

Objective, the analysis is automatically
completed by the software

Clonal heterogeneity at the genetic
level and cellular level cannot be
detected

Relatively expensive
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specific clones through NGS, providing a more accu-
rate prediction of relapse and more evidence of clonal
evolution. Moreover, biclonalities, oligo-clonalities, and
uncommon rearrangements can also be identified with
reasonable confidence. The IG NGS approach provided
a common picture of not only the MRD of malignancies
but also the immune repertoire. Similar to PCR-based
approaches, the IG NGS method can be used in cryopre-
served and fixed samples. The objective interpretation
and the automated analysis of subsequent samples based
on pipelines and predefined thresholds further expanded
the scope of its application. Limitations of the IG NGS
approach exist, such as the higher standard for accessi-
bility caused by requirements for better computing and
high-quality DNA input at diagnosis, longer turnaround
time of approximately 5-7 days, failures of detection due
to the indistinguishable background of reactive B cells, V
deletions and incomplete DJ rearrangements or hemodi-
lution, and the lack of well-established, widely accepted
protocols. NGS technology is based on an initial PCR
step, which could be influenced by annealing and SHM
in primer-binding regions. The high cost per sample is
also a constraint, preventing the use of NGS-based MRD
monitoring in most clinical trials.

The superiority of NGS-MRD in clinical practice

Statistics from clinical trials in which treatment decisions
were made based on MRD are scarce due to the obsta-
cles to practically applying MRD monitoring. However,
several studies have focused on the functionality of the
NGS-based MRD method by comparing it with other
gold-standard approaches in registered clinical trials
evaluating different B-lineage malignancies (Table 4).
In summary, NGS-based MRD exhibited excellent per-
formance in sensitivity, precision, reproductivity, and
prediction of relapse. This method showed at least a com-
parable ability to identify the accurate sequence com-
pared with Sanger sequencing [18, 98, 123] and could
define and track the index clone compared with ASO-
PCR [11, 22, 93, 124], MEC [15, 125], NGEF [18, 20, 21,
123] and mass spectrometry [118]. With further optimi-
zation for satisfactory quantification and higher econom-
ical efficiency in the future, NGS-based MRD monitoring
has the potential for wider application in routine clinical
practice.

Current challenges in IG NGS-based MRD
monitoring

MRD monitoring has already become a relatively mature
and widely acceptable technology despite insufficient
reliability when independently guiding treatment-asso-
ciated decisions. However, the answers to several ques-
tions remain obscure or controversial. The first is the
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significance of sensitivity in real-world utilization. The-
oretically, the deeper the detection is, the more accu-
rate the results will be, which was emphasized in some
articles that demonstrated a higher relapse rate of NGS
or NGF MRD-positive patients compared with those
assessed with other techniques with lower sensitiv-
ity [11, 125]. However, those MRD-positive patients
with stable and nearly disease-free status with no evi-
dence of relapse, common in clinical trials evaluating
novel treatments, were ignored in most studies, raising
the question of whether the presence of MRD detected
by the instruments themselves or the quantity of MRD
above a predefined threshold influences the prognosis.
Another factor that should be considered is the sample
requirement. A substantial concentration of DNA input
is needed to reach a sensitivity of 107%, which is usually
unavailable from patients who have experienced inten-
sive treatment elsewhere and is also time-and labor-con-
suming. Although it is difficult to find and achieve the
right balance of economic benefits and optimal results,
the combination of higher sensitivity for detection and
risk stratification based on the number of residual tumor
cells can be an inspiration to develop next-generation
techniques for MRD monitoring. The second question
is associated with the sample types. Diagnosis and MRD
monitoring are generally performed by analyzing the
infiltration of tumor cells in the BM. It should be noted
that BM aspiration and biopsy are invasive procedures
with potential risks, limiting the ability of doctors to take
repeated samples.

Future prospects of IG NGS-based MRD monitoring
Compared with those for examining BM aspirations,
tests for peripheral blood are more convenient and acces-
sible. Recently, liquid biopsy technology has emerged to
capture information about SHM, V(D)] rearrangements,
amplification and gene copy variations. By using circulat-
ing tumor cells (CTCs), circulating tumor DNA (ctDNA),
cell-free DNA (cfDNA), or other cell-free nucleic acids
(mRNA, microRNA), liquid biopsy can be conducted in
a noninvasive manner [126]. The results of several stud-
ies have suggested that ctDNA and cfDNA alone are
practical for most lymphomas [5]. The rapid clearance of
cfDNA allows tracking of the dynamic changes in MRD
[61]. Unfortunately, the cfDNA level was proven insuffi-
cient as an independent prognostic factor in some studies
[127]. The IG NGS-based method can also be applied to
detect ctDNA and peripheral blood mononuclear cells,
which is particularly promising for application in DLBCL
[57, 128]. However, this approach is limited by the very
low concentration of ctDNA or CTCs early in the disease,
more localized infiltration of tumors, and MRD monitor-
ing after intensive treatment; thus, liquid technologies
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inevitably present considerable and ongoing challenges
requiring the development of ultrasensitive techniques
[129].

Conclusion

This review provides a comprehensive evaluation of I1G
NGS-based MRD monitoring, including the necessity
of MRD monitoring, the scope of application of the I1G
NGS method, the superiority of the IG NGS method for
diagnosing and tracking MRD, the existing limitations,
future trends, and potential development directions.
With the continuing increasing sensitivity and affordabil-
ity of HTS technology, the routine use of IG NGS-based
MRD monitoring in clinical practice is expected within
the near future, with robust performance and reasonable
per-sample cost.
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